Document Detail


Climatic adaptation and the evolution of basal and maximum rates of metabolism in rodents.
MedLine Citation:
PMID:  15266984     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Metabolic rate is a key aspect of organismal biology and the identification of selective factors that have led to species differences is a major goal of evolutionary physiology. We tested whether environmental characteristics and/or diet were significant predictors of interspecific variation in rodent metabolic rates. Mass-specific basal metabolic rates (BMR) and maximum metabolic rates (MMR, measured during cold exposure in a He-O2 atmosphere) were compiled from the literature. Maximum (Tmax) and minimum (Tmin) annual mean temperatures, latitude, altitude, and precipitation were obtained from field stations close to the capture sites reported for each population (N = 57). Diet and all continuous-valued traits showed statistically significant phylogenetic signal, with the exception of mass-corrected MMR and altitude. Therefore, results of phylogenetic analyses are emphasized. Body mass was not correlated with absolute latitude, but was positively correlated with precipitation in analyses with phylogenetically independent contrasts. Conventional multiple regressions that included body mass indicated that Tmax (best), Tmin, latitude, and diet were significant additional predictors of BMR. However, phylogenetic analyses indicated that latitude was the only significant predictor of mass-adjusted BMR (positive partial regression coefficient, one-tailed P = 0.0465). Conventional analyses indicated that Tmax, Tmin (best), and altitude explained significant amounts of the variation in mass-adjusted MMR. With body mass and Tmin in the model, no additional variables were significant predictors. Phylogenetic contrasts yielded similar results. Both conventional and phylogenetic analyses indicated a highly significant positive correlation between residual BMR and MMR (as has also been reported for birds), which is consistent with a key assumption of the aerobic capacity model for the evolution of vertebrate energetics (assuming that MMR and exercise-induced maximal oxygen consumption are positively functionally related). Our results support the hypothesis that variation in environmental factors leads to variation in the selective regime for metabolic rates of rodents. However, the causes of a positive association between BMR and latitude remain obscure. Moreover, an important area for future research will be experiments in all taxa are raised under common conditions to allow definitive tests of climatic adaptation in endotherm metabolic rates and to elucidate the extent of adaptive phenotypic plasticity.
Authors:
Enrico L Rezende; Francisco Bozinovic; Theodore Garland
Related Documents :
3197754 - Diurnal effects on debrisoquine hydroxylation phenotyping.
16286804 - Multifocal electroretinography changes in the macula at high altitude: a report of thre...
4084174 - Analyses of maximum cardiopulmonary performance during exposure to acute hypoxia at sim...
1542134 - Effects of altitude on endogenous carboxyhemoglobin levels.
8674084 - The effectiveness of o2 administration for transient ischemic attacks in moyamoya disea...
23486694 - Determination of maximal oxygen uptake using the bruce or a novel athlete-led protocol ...
Publication Detail:
Type:  Comparative Study; Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.    
Journal Detail:
Title:  Evolution; international journal of organic evolution     Volume:  58     ISSN:  0014-3820     ISO Abbreviation:  Evolution     Publication Date:  2004 Jun 
Date Detail:
Created Date:  2004-07-22     Completed Date:  2004-08-30     Revised Date:  2008-06-04    
Medline Journal Info:
Nlm Unique ID:  0373224     Medline TA:  Evolution     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1361-74     Citation Subset:  IM    
Affiliation:
Department of Biology, University of California, Riverside, California 92521, USA. erezende@email.ucr.edu
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animals
Basal Metabolism / physiology*
Body Weight
Climate*
Diet
Energy Metabolism / physiology*
Evolution*
Geography
Models, Biological*
Phylogeny
Regression Analysis
Rodentia / physiology*
Temperature

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Climate change and size evolution in an island rodent species: new perspectives on the island rule.
Next Document:  Calibration age and quartet divergence date estimation.