Document Detail

Circadian and extracircadian exploration during daytime hours of circulating corticosterone and other endocrine chronomes.
MedLine Citation:
PMID:  16275479     Owner:  NLM     Status:  MEDLINE    
During 7 consecutive days, blood and several tissues were collected during daytime working hours only, three times per day at 4-h intervals from inbred Wistar rats, which had been previously standardized for 1 month in two rooms on a regimen of 12 h of light (L) alternating with 12 h of darkness (LD12:12). In one room, lights were on from 09:00 to 21:00 and in the other room, lights were on from 21:00 to 09:00 (DL12:12; reversed lighting regimen). This setup provides a convenient design to study circadian and extracircadian variations over long (e.g., 7-day) spans. Prior checking of certain circadian rhythms in animals reared in the room on reversed lighting (DL) as compared with animals in the usual (LD) regimen provided evidence that the 180 degrees phase-shift had occurred. These measurements were limited to the circadian (and not extended to infradian) variation. As marker rhythm, the core temperature of a subsample of rats was measured every 4 h around the clock (by night as well as by day) before the start of the 7-day sampling. An antiphase of the circadian rhythm in core temperature was thus demonstrated between rats in the LD vs. DL rooms. A sex difference in core temperature was also found in each room. A reversed rhythm in animals kept in DL and an antiphase between rats kept in DL vs. LD was again shown for the circulating corticosterone rhythm documented in subsamples of 8 animals of each sex sampled around the clock during the first approximately 1.5 day of the 7-day sampling. The findings were in keeping with the proposition that sampling rats at three timepoints 4 h apart during daytime from two rooms on opposite lighting regimens allows the assessment of circadian changes, the daytime samples from animals kept on the reversed lighting regimen accounting for the samples that would have to be obtained by night from animals kept in the room with the usual lighting regimen. During the 7-day-long follow-up, circadian and extracircadian spectral components were mapped for serum corticosterone, taking into account the large day-to-day variability. A third check on the synchronization of the animals to their respective lighting regimen was a comparison (and a good agreement) between studies carried out earlier on the same variables and the circadian results obtained on core temperature and serum corticosterone in this study as a whole. The present study happened to start on the day of the second extremum of a moderate double magnetic storm. The study of any associations of corticosterone with the storm is beyond our scope herein, as are the results on circulating prolactin, characterized by a greater variability and a larger sex difference than corticosterone. Sex differences and extracircadian aspects of prolactin and endothelin determined in the same samples are reported elsewhere, as are results on melatonin. Prior studies on melatonin were confirmed insofar as a circadian profile is concerned by sampling on two antiphasic lighting regimens, as also reported elsewhere. Accordingly, a circadian map for the rat will eventually be extended by the result of this study and aligned with other maps with the qualification of the unassessed contribution in this study of a magnetic storm.
R Jozsa; A Olah; G Cornélissen; V Csernus; K Otsuka; M Zeman; G Nagy; J Kaszaki; K Stebelova; N Csokas; W Pan; M Herold; E E Bakken; F Halberg
Related Documents :
3949419 - Ultradian rhythms in human fetal heart rate: a computerised time series analysis.
10049479 - Endogenous rhythms of locomotor activity in the high-shore limpet, helcion pectunculus ...
16275479 - Circadian and extracircadian exploration during daytime hours of circulating corticoste...
6313339 - Circadian rhythms of pineal function in rats.
21103019 - Are different rhythms good for different functions?
2881659 - Plasma corticosterone in chicks reared under several lighting schedules.
25265499 - Variable pulsed light treatment of melasma and post-inflammatory hyperpigmentation - a ...
14523249 - Blue light-dependent in vivo and in vitro phosphorylation of arabidopsis cryptochrome 1.
24524989 - Ankle torque control that shifts the center of pressure from heel to toe contributes no...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie     Volume:  59 Suppl 1     ISSN:  0753-3322     ISO Abbreviation:  Biomed. Pharmacother.     Publication Date:  2005 Oct 
Date Detail:
Created Date:  2005-11-08     Completed Date:  2005-12-22     Revised Date:  2013-06-07    
Medline Journal Info:
Nlm Unique ID:  8213295     Medline TA:  Biomed Pharmacother     Country:  France    
Other Details:
Languages:  eng     Pagination:  S109-16     Citation Subset:  IM    
Department of Anatomy (MTA-TKI), University Pecs, Medical School, Pecs, Hungary.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Body Temperature / physiology
Body Weight / physiology
Chronobiology Phenomena*
Circadian Rhythm / physiology*
Corticosterone / blood*
Electromagnetic Fields
Endocrine Glands / physiology*
Hormones / blood*
Linear Models
Melatonin / blood
Nonlinear Dynamics
Prolactin / blood
Sex Characteristics
Solar Activity
Grant Support
Reg. No./Substance:
0/Hormones; 50-22-6/Corticosterone; 73-31-4/Melatonin; 9002-62-4/Prolactin

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Chronomics of autism and suicide.
Next Document:  Yearly and perhaps transyearly human natality patterns near the equator and at higher latitudes.