Document Detail


Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective β1-blocker therapy.
MedLine Citation:
PMID:  25480109     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The β1-adrenergic antagonist metoprolol improves cardiac function in animals and patients with chronic heart failure, isolated mitral regurgitation (MR), and ischemic heart disease, though the molecular mechanisms remain incompletely understood. Metoprolol has been reported to upregulate cardiac expression of β3-adrenergic receptors (β3AR) in animal models. Myocardial β3AR signaling via neuronal nitric oxide synthase (nNOS) activation has recently emerged as a cardioprotective pathway. We tested whether chronic β1-adrenergic blockade with metoprolol enhances myocardial β3AR coupling with nitric oxide-stimulated cyclic guanosine monophosphate (β3AR/NO-cGMP) signaling in the MR-induced, volume-overloaded heart. We compared the expression, distribution, and inducible activation of β3AR/NO-cGMP signaling proteins within myocardial membrane microdomains in dogs (canines) with surgically induced MR, those also treated with metoprolol succinate (MR+βB), and unoperated controls. β3AR mRNA transcripts, normalized to housekeeping gene RPLP1, increased 4.4 × 10(3)- and 3.2 × 10(2)-fold in MR and MR+βB hearts, respectively, compared to Control. Cardiac β3AR expression was increased 1.4- and nearly twofold in MR and MR+βB, respectively, compared to Control. β3AR was detected within caveolae-enriched lipid rafts (Cav3(+)LR) and heavy density, non-lipid raft membrane (NLR) across all groups. However, in vitro selective β3AR stimulation with BRL37344 (BRL) triggered cGMP production within only NLR of MR+βB. BRL induced Ser (1412) phosphorylation of nNOS within NLR of MR+βB, but not Control or MR, consistent with detection of NLR-specific β3AR/NO-cGMP coupling. Treatment with metoprolol prevented MR-associated oxidation of NO biosensor soluble guanylyl cyclase (sGC) within NLR. Metoprolol therapy also prevented MR-induced relocalization of sGCβ1 subunit away from caveolae, suggesting preserved NO-sGC-cGMP signaling, albeit without coupling to β3AR, within MR+βB caveolae. Chronic β1-blockade is associated with myocardial β3AR/NO-cGMP coupling in a microdomain-specific fashion. Our canine study suggests that microdomain-targeted enhancement of myocardial β3AR/NO-cGMP signaling may explain, in part, β1-adrenergic antagonist-mediated preservation of cardiac function in the volume-overloaded heart.
Authors:
Danielle M Trappanese; Yuchuan Liu; Ryan C McCormick; Alessandro Cannavo; Gayani Nanayakkara; Marina M Baskharoun; Harish Jarrett; Felix J Woitek; D Michael Tillson; A Ray Dillon; Fabio A Recchia; Jean-Luc Balligand; Steven R Houser; Walter J Koch; Louis J Dell'Italia; Emily J Tsai
Related Documents :
25301529 - Impact of intravenous nitroglycerin in the management of acute decompensated heart fail...
22405659 - Cardiac magnetic resonance imaging for stage b heart failure.
10402139 - Expression of endothelin in equine laminitis.
25238499 - Cardiac function after acute support with direct mechanical ventricular actuation in ch...
22432559 - Organ-specific responses to circulatory disturbances in heart failure: new insights.
22103459 - Rare case of isolated levocardia with polysplenia including normally structured lung wi...
25187609 - Left atrial dysfunction relates to symptom onset in patients with heart failure and pre...
22504219 - Behaviour of protein carbonyl groups in juvenile myocardial infarction.
7438389 - Left ventricular ejection fraction calculated from volumes and areas: underestimation b...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-12-6
Journal Detail:
Title:  Basic research in cardiology     Volume:  110     ISSN:  1435-1803     ISO Abbreviation:  Basic Res. Cardiol.     Publication Date:  2015 Jan 
Date Detail:
Created Date:  2014-12-6     Completed Date:  -     Revised Date:  2014-12-7    
Medline Journal Info:
Nlm Unique ID:  0360342     Medline TA:  Basic Res Cardiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  456     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Collectivistic Orientation, Acculturative Stress, Cultural Self-Efficacy, and Depression: A Longitud...
Next Document:  Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large popu...