Document Detail

Chemical labeling of electrochemically cleaved peptides.
MedLine Citation:
PMID:  23322661     Owner:  NLM     Status:  In-Data-Review    
RATIONALE: Cleavage of peptide bonds C-terminal to tyrosine and tryptophan after electrochemical oxidation may become a complementary approach to chemical and enzymatic cleavage. A chemical labeling approach specifically targeting reactive cleavage products is presented here and constitutes a promising first step towards the development of a new proteomics workflow.
METHODS: Hexylamine was used to react with the spirolactone moieties generated after electrochemical oxidation and cleavage of tripeptides. The influence of pH and reaction time on the yield was determined and the excess of tagging reagent was optimized. Selective detection of the tagged cleavage products was achieved by precursor ion scanning in a triple quadrupole mass spectrometer.
RESULTS: Optimal labeling was reached under aqueous conditions when working at pH 10 with a reaction time of 0.5 min. The excess of hexylamine over spirolactone groups can be significantly decreased by working under non-aqueous conditions in pure acetonitrile to prevent spirolactone hydrolysis. The specific formation of hexylamine-containing y(1) reporter ions generated by collision-induced dissociation (CID) tandem mass spectrometry (MS/MS) allows for selective detection by precursor ion scanning of the cleaved and labeled peptides.
CONCLUSIONS: This work presents a method for selective labeling and detection of electrochemically cleaved Tyr- and Trp-containing peptides for which reaction conditions have been optimized with hexylamine as labeling agent. This workflow offers new possibilities for electrochemical oxidation, cleavage and labeling of peptides and proteins. Copyright © 2013 John Wiley & Sons, Ltd.
Julien Roeser; Niels F A Alting; Hjalmar P Permentier; Andries P Bruins; Rainer P H Bischoff
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Rapid communications in mass spectrometry : RCM     Volume:  27     ISSN:  1097-0231     ISO Abbreviation:  Rapid Commun. Mass Spectrom.     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-01-16     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8802365     Medline TA:  Rapid Commun Mass Spectrom     Country:  England    
Other Details:
Languages:  eng     Pagination:  546-52     Citation Subset:  IM    
Copyright Information:
Copyright © 2013 John Wiley & Sons, Ltd.
Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  The carbon dioxide production rate assumption biases gastric emptying parameters in healthy adults.
Next Document:  Collision-induced dissociation of aflatoxins.