Document Detail

Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages.
MedLine Citation:
PMID:  23218373     Owner:  NLM     Status:  In-Data-Review    
The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties.
María F Basanta; Marina F de Escalada Plá; Carlos A Stortz; Ana M Rojas
Related Documents :
23065863 - Self-sorting of deformable particles in an asynchronous logic microfluidic circuit.
22443373 - Photostability and skin penetration of different e-resveratrol-loaded supramolecular st...
18054953 - Electrolyte effect on mixed micelle and interfacial properties of binary mixtures of ca...
Publication Detail:
Type:  Journal Article     Date:  2012-10-08
Journal Detail:
Title:  Carbohydrate polymers     Volume:  92     ISSN:  1879-1344     ISO Abbreviation:  Carbohydr Polym     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2012-12-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8307156     Medline TA:  Carbohydr Polym     Country:  England    
Other Details:
Languages:  eng     Pagination:  830-41     Citation Subset:  IM    
Copyright Information:
Copyright © 2012 Elsevier Ltd. All rights reserved.
Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chito...
Next Document:  Thermal effects on the structure of cereal starches. EPR and Raman spectroscopy studies.