Document Detail

Characterization of ten highly polymorphic microsatellite loci for the intertidal mussel Perna perna, and cross species amplification within the genus.
Jump to Full Text
MedLine Citation:
PMID:  23039168     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: The brown mussel Perna perna (Linnaeus, 1758) is a dominant constituent of intertidal communities and a strong invader with multiple non-native populations distributed around the world. In a previous study, two polymorphic microsatellite loci were developed and used to determine population-level genetic diversity in invasive and native P. perna populations. However, higher number of microsatellite markers are required for reliable population genetic studies.In this context, in order to understand P. perna origins and history of invasion and to compare population genetic structure in native versus invaded areas, we developed 10 polymorphic microsatellite markers.
FINDINGS: Described microsatellite markers were developed from an enriched genomic library. Analyses and characterization of loci using 20 individuals from a population in Western Sahara revealed on average 11 alleles per locus (range: 5-27) and mean gene diversity of 0.75 (range: 0.31 - 0.95). One primer pair revealed possible linkage disequilibrium while heterozygote deficiency was significant at four loci. Six of these markers cross-amplified in P. canaliculus (origin: New Zealand).
CONCLUSIONS: Developed markers will be useful in addressing a variety of questions concerning P. perna, including dispersal scales, genetic variation and population structure, in both native and invaded areas.
Authors:
Nelson C Coelho; Gerardo I Zardi; Gareth A Pearson; Ester A Serrão; Katy R Nicastro
Related Documents :
19776058 - Rapid adaptive evolution of northeastern coyotes via hybridization with wolves.
17767728 - Genetic variation in northern thailand hill tribes: origins and relationships with soci...
24476528 - Clonal expansion of verticillium dahliae in lettuce.
11844138 - West mediterranean islands (corsica, balearic islands, sardinia) and the basque populat...
22179748 - Genetic variation, population structure and identification of yellow catfish, mystus ne...
6404678 - Homoeosis in drosophila: a description of the polycomb lethal syndrome.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-10-08
Journal Detail:
Title:  BMC research notes     Volume:  5     ISSN:  1756-0500     ISO Abbreviation:  BMC Res Notes     Publication Date:  2012  
Date Detail:
Created Date:  2012-12-13     Completed Date:  2013-05-23     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  101462768     Medline TA:  BMC Res Notes     Country:  England    
Other Details:
Languages:  eng     Pagination:  558     Citation Subset:  IM    
Affiliation:
CCMAR, CIMAR-Laboratório Associado, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal. ncoelho@ualg.pt
Data Bank Information
Bank Name/Acc. No.:
GENBANK/JX183697;  JX183698;  JX183699;  JX183700;  JX183701;  JX183702;  JX183703;  JX183704;  JX183705;  JX183706
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Alleles
Animals
Genetic Variation*
Genomic Library
Genotype
Introduced Species
Linkage Disequilibrium
Microsatellite Repeats / genetics*
Molecular Sequence Data
Perna / classification,  genetics*
Polymerase Chain Reaction
Polymorphism, Genetic*
Sequence Analysis, DNA
Species Specificity
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BMC Res Notes
Journal ID (iso-abbrev): BMC Res Notes
ISSN: 1756-0500
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2012 Coelho et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 5 Month: 7 Year: 2012
Accepted Day: 2 Month: 10 Year: 2012
collection publication date: Year: 2012
Electronic publication date: Day: 8 Month: 10 Year: 2012
Volume: 5First Page: 558 Last Page: 558
PubMed Id: 23039168
ID: 3520869
Publisher Id: 1756-0500-5-558
DOI: 10.1186/1756-0500-5-558

Characterization of ten highly polymorphic microsatellite loci for the intertidal mussel Perna perna, and cross species amplification within the genus
Nelson C Coelho1 Email: ncoelho@ualg.pt
Gerardo I Zardi1 Email: zardi73@yahoo.it
Gareth A Pearson1 Email: gpearson@ualg.pt
Ester A Serrão1 Email: eserrao@ualg.pt
Katy R Nicastro1 Email: katynicastro@yahoo.it
1CCMAR, CIMAR-Laboratório Associado, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal

Findings

The genus Perna belongs to the Mytilidae (Mollusca; Bivalvia; Lamellibranchia; Mytiloida; Mytilidae), the family of “true mussels” which includes green and brown shell mussels from tropical, subtropical, warm and cold temperate regions [1]. Species within this genus are economically and ecologically important because they constitute an important source of human food [2,3]. They are dominant species on rocky shores often forming continuous beds in the intertidal and the shallow subtidal, providing microhabitats for many species [4].

The brown mussel Perna perna is a subtropical/tropical species widely distributed along the west coast of Madagascar, east African coast (from central Mozambique to False Bay), extending through the Gulf of Aden into the Red Sea, west coast of Africa (apart from the upwelling-influenced Benguela region on the west coast of South Africa) [5,6]; and from the Strait of Gibraltar to the Gulf of Tunis [7]. It is also present in Sri Lanka, southern India and in the Atlantic coast of South America where it was reported in Venezuela, Uruguay, and Brazil, as well as in the West Indies [7-9]. In Brazil, P. perna has been reclassified as an old introduction, most likely dating from the sixteenth century [10]. Moreover, it is reported as invasive in Western Australia [11] and in Texas, the Gulf of Mexico and southern Vera Cruz, where it was introduced via ballast water [12]. It has recently been reported for the first time on the southern Portuguese coast, suggesting a recent range expansion from Northern African shores [13].

Despite the economic and ecological impacts of P. perna, only two microsatellite markers have previously been published for this species [14]. These markers were used to score individuals from 12 populations spanning the natural and introduced ranges of the brown mussel. To improve the accuracy of genetic studies we developed and characterized additional polymorphic microsatellite markers. The microsatellite markers developed in this study will also be valuable for food forensic uses and species genetic traceability through various steps in the food chain from producer to retailers. This will enable correct identification of food varieties, which is important in order to ensure quality, safety, authenticity and health for consumers. We describe ten highly polymorphic microsatellite loci for the mussel P. perna.

Total genomic DNA was extracted from 5 individuals collected in South Africa (Port Elizabeth, 33°58’47.81”S, 25°39’30.72”E) using a phenol-chloroform extraction method [15]. An enriched library was made by ecogenics GmbH (Zurich, Switzerland) from size selected genomic DNA ligated into SNX forward/SNX reverse-linker [16] and enriched by magnetic bead selection with biotin-labeled (CT)13, (GT)13, (TAC)10 and (GTAT)7 oligonucleotide repeats [17,18]. Of 528 recombinant colonies screened, 249 gave a positive signal after hybridization. Plasmids from 96 positive clones were sequenced and primers were designed for 32 microsatellite inserts, of which 26 were tested for polymorphism. Thirteen pairs of primers were excluded because they did not amplify in at least 16 of 20 individuals initially used for polymorphism tests and three were excluded because they resulted in an allelic pattern that was difficult to interpret. The resulting ten pairs of primers were selected as polymorphic loci and were further characterized using 20 P. perna individuals from one population from Western Sahara (Boujdour, 26°07’25”N, 14°29’57”W).

Polymerase chain reaction (PCR) was performed in volumes of 10 μl containing ±10 ng of DNA, 0.5 μM of each primer labelled with a florescent marker, 0.2 mM dNTPs (Bioline), 1.5 mM MgCl2, 3.0 μl of 5x PCR Buffer and 0.75 U of GoTaq Polymerase (Promega, Madison, WI). Cycling conditions consisted of an initial denaturing step of 5 min at 95°C, followed by 35 cycles of 30 s at 95°C, 30 s at annealing temperature (see Table 1 for locus optimization), 40 s at 72°C, and a final elongation step at 72°C for 20 minutes. All PCR reactions were performed in a GeneAmp 9700 thermocycler (PE Applied Biosystems). A DNA analyser (ABI PRISM 3130xl; Applied Biosystems) was used to analyse fragment lengths with the GeneScan Liz 500 size standard (Applied Biosystems). Raw allele sizes were scored with STRAND ( http://www.vgl.ucdavis.edu/informatics/STRand), binned using the R package MsatAllele [19], and manually reviewed for ambiguities. Observed (HO) and expected (HE) heterozygosities were estimated, and deviations from linkage and Hardy-Weinberg equilibria were tested using GENETIX software [20]. The number of alleles per locus ranged from 5 to 27 (Table 1). Expected and observed heterozygosities ranged from 0.31 to 0.95 and from 0.23 to 1.0, respectively, and significant heterozygote deficiency was detected in four loci after applying the q-value correction procedure (Table 1). High frequency of null alleles is likely at 3 of these loci (Perper01, Perper11 and Perper16), which was confirmed by further analysis using MICROCHECKER software [21].

We tested for linkage disequilibrium between all pairs of loci according to the procedure of Black and Krafsur [22]. The significance of the results was tested by permutation using 1000 replicates, and one pair (P20-P29) was significant at the 5% level (p = 0.045). Although all tested individuals were heterozygous for locus Perper05 (HO = 1; Table 1), this result is identical to that expected under Hardy-Weinberg equilibrium (HE; Table 1) for this locus, as shown by its FIS not significantly differing from zero. All markers were then tested for cross-amplification in five individuals of P. canaliculus from New Zealand, of which several amplifications were positive (Table 1).

Microsatellite markers have been developed for other species of the genus Perna (e.g. P. canaliculus[23]; P. viridis[24]) showing levels of polymorphism similar to those of the markers described in our study. The average allele number microsatellites are 8.8 and 11.7/locus for P. canaliculus and P. viridis respectively. Expected heterozygosity average at 0.78 and 0.69 for P. canaliculus and P. viridis respectively.

Deficiency in the number of heterozygotes observed (relative to Hardy-Weinberg expectation), with both allozyme and microsatellite studies have been documented in many marine molluscs e. g. [25-28], including species displaying separate sexes, e.g. P. perna. In this case, we cannot exclude species-specific, locus specific or population specific explanations for the results. Further genetic population structure analyses could shed light to this phenomenon in P. perna. Moreover, these ten microsatellite loci provide a useful tool to understand processes influencing species boundaries, such as range expansions outside the native distribution of P. perna populations, and compare diversity and differentiation scales in invasive and native populations.

Availability of supporting data

The microsatellite sequences are available through the National Center for Biotechnology Information (see http://www.ncbi.nlm.nih.gov/). The accession numbers on the repository are the following (see also Table 1):

Perper-01- JX183697; Perper-02 -JX183698; Perper-05 -JX183699; Perper-08 -JX183700; Perper-11 -JX183701; Perper-16 -JX183702; Perper-20 -JX183703; Perper-26 -JX183704; Perper-27 -JX183705 and Perper-29 -JX183706.


Competing interests

The authors declare they have no competing interests.


Authors’ contributions

All authors participated in the design and implementation of the study, supervision of the work and processing interpretation of the results. CNC, NKR and ZGI participated in data analysis, microsatellite marker validation and drafted the manuscript. All authors read and approved the final manuscript.


Acknowledgements

We thank P. Blasquez for sampling, M. Valente Bernardo for sequencing and genotyping assistance. Financial support for this work was provided by Fundação para a Ciência e Tecnologia (FCT, Portugal) through a postdoctoral grant (to GIZ) and the research project PTDC/BIA-BEC/103916/2008.


References
Gosling EM,Bivalve molluscs: biology, ecology and cultureYear: 2003Oxford, UK: Blackwell Science443
Griffiths CL,Branch GM,The exploitation of coastal invertebrates and seaweeds in South Africa: historical trends, ecological impacts and implications for managementTrans R Soc S AfrYear: 19975212114810.1080/00359199709520619
Tomalin BJ,Kyle R,Subsistence and recreational mussel (perna perna) collecting in KwaZulu-Natal, south Africa: fishing mortality and precautionary managementS Afr J ZoolYear: 1998331222
Harley CDG,Climate change, keystone predation, and biodiversity lossScienceYear: 201133460591124112710.1126/science.121019922116885
Zardi G,McQuaid C,Teske P,Barker N,Unexpected genetic structure of mussel populations in south Africa: indigenous perna perna and invasive mytilus galloprovincialisMar Ecol Prog SerYear: 2007337135144
Zardi G,Nicastro K,McQuaid C,Hancke L,Helmuth B,The combination of selection and dispersal helps explain genetic structure in intertidal musselsOecologiaYear: 201116594795810.1007/s00442-010-1788-920878422
Wood AR,Apte S,MacAvoy ES,Gardner J,A molecular phylogeny of the marine mussel genus perna (bivalvia: mytilidae) based on nuclear (ITS1&2) and mitochondrial (COI) DNA sequencesMol Phylogenet EvolYear: 20074468569810.1016/j.ympev.2006.12.01917292632
Vakily JM,The biology and culture of mussels of the genus perna vol. 17Year: 1989Manilla, Philippines: International Center for Living Aquatic Resources Management
Berry PF,Reproduction, growth and production in the mussel, perna perna (Linnaeus), on the east coast of south AfricaInvestigational report No. 48Year: 1978Durban: Oceanographic Research Institute
Silva EC,Barros F,Macrofauna bentonica introduzida no brasil: lista de especies marinhas e dulcıcolas e distribuiçao atualOecologia AustralisYear: 20111532634410.4257/oeco.2011.1502.10
Hayes K,Sliwa S,Migus F,McEnnulty,Dunstan PK,National priority pestsYear: 2005Parkes, Canberra, Australia: Australian Government Department of the Environment and Heritage
Hicks DW,Tunnell JWJ,Invasion of the south Texas coast by the edible brown mussel perna perna (Linnaeus, 1758)VeligerYear: 1993369299
Lourenço C,Nicastro KR,Serrão EA,Zardi GI,First record of the brown mussel (perna perna) from the European Atlantic coastMarine Biodiversity RecordYear: 20125e39
Holland BS,Invasion without a bottleneck: microsatellite variation in natural and invasive populations of the brown mussel perna perna (L)Marine BiotechnolYear: 20013540741510.1007/s1012601-0060-Z
Nicastro K,Zardi G,McQuaid C,Teske P,Barker N,Coastal topography drives genetic structure in marine musselsMar Ecol Prog SerYear: 2008368189195
Hamilton MB,Pincus EL,Di Fiore A,Fleischer RC,Universal linker and ligation procedures for construction if genomic DNA libraries enriched for microsatellitesBiotechniquesYear: 19992750050710489609
Gautschi B,Tenzer I,Muller JP,Schmid B,Isolation and characterization of microsatellite loci in the bearded vulture (gypaetus barbatus) and cross-amplification in three old world vulture speciesMol EcolYear: 20009122193219510.1046/j.1365-294X.2000.105321.x11123649
Gautschi B,Widmer A,Koella J,Isolation and characterization of microsatellite loci in the dice snake (Natrix tessellata)Mol EcolYear: 20009122192219310.1046/j.1365-294X.2000.105320.x
Alberto F,MsatAllele_1.0: An R package to visualize the binning of microsatellite allelesJ HeredYear: 2009100339439710.1093/jhered/esn11019126639
Belkhir K,Borsa P,Chikhi L,Raufaste N,Bonhomme F,GENETIX 4.05, logiciel sous Windows TM pour la génétique des populationsYear: 1996Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II 1996–2004.
Van Oosterhout C,Hutchinson WF,Wills DPM,Shipley P,Micro-checker: software for identifying and correcting genotyping errors in microsatellite dataMolecular Ecology NotesYear: 20044353553810.1111/j.1471-8286.2004.00684.x
Black WC,Krafsur ES,A FORTRAN program for the calculation and analysis of two-locus linkage disequilibrium coefficientsTAG Theor Appl GenetYear: 198570549149610.1007/BF00305981
MacAvoy ES,Wood AR,Gardner JPA,Development and evaluation of microsatellite markers for identification of individual greenshell™ mussels (perna canaliculus) in a selective breeding programmeAquacultureYear: 2008274414810.1016/j.aquaculture.2007.11.003
Lin G,Feng F,Yue GH,Isolation and characterization of polymorphic microsatellites from Asian green mussel (perna viridis)Molecular Ecology NotesYear: 2007761036103810.1111/j.1471-8286.2007.01765.x
Zouros E,Foltz DW,Possible explanation of heterozygote deficiency in bivalve molluscsMalacologiaYear: 198425583591
Raymond M,Vaeaentoe RL,Thomas F,Rousset F,de Meeues T,Renaud F,Heterozygote deficiency in the mussel mytilus edulis species complex revisitedMar Ecol Prog SerYear: 1997156225237
Borsa P,Zainuri M,Delay B,Heterozygote deficiency and population structure in the bivalve ruditapes decussatusHeredityYear: 1991661810.1038/hdy.1991.1
Andrade SCS,Solferini VN,Fine-scale genetic structure overrides macro-scale structure in a marine snail: nonrandom recruitment, demographic events or selection?Biol J Linn SocYear: 200791232610.1111/j.1095-8312.2007.00782.x

Tables
[TableWrap ID: T1] Table 1 

Characterization of ten microsatellite loci for brown mussel Perna perna


Locus name (Genebank no.) Primer sequences Repeat motif Clone size (bp) PCR annealing (°C) A Size range (bp) HE HO FIS Cross amplification (positive/total)
Perper-01
F-TGGAACTTAGGGCCTTCCTC
(AC)13
176
56
9
158-183
0.8075
0.45
0.46311**
3/5
(JX183697)
R-TCCAATTCTGTGAAATCATTGAC
Perper-02
F-CCCGGTTTTAAGTGGTAGATG
(GT)15
113
57
6
110-137
0.3112
0.3000
0.06173
0/5
(JX183698)
R-AGCAAACGAAGGACAAATCG
Perper-05
F-TCAGTGCCGCGTGATAATAC
(TG)15
127
59
16
111-150
0.885
1.000
−0.10465
4/5
(JX183699)
R-TCCAATTACGTTTGTTTTTGC
 
Perper-08
F-AATGTTCAATGTCGACAGACTATG
(ACAG)7
129
56
5
110-126
0.7604
0.5789
0.26394*
0/5
(JX183700)
R-TTCTGAAGCACTGGATGTGG
 
Perper-11
F-TTAACGTTGAAATCCGTGAGG
(GT)9…(GT)13
133
58
16
70-167
0.9044
0.4667
0.51000**
4/5
(JX183701)
R-CATTCCAATCCCACGCATAC
 
Perper-16
F-TGTGATTTAAAGTTGGACTTGTTTC
(AC)26
134
56
8
104-130
0.5606
0.2353
0.60000**
0/5
(JX183702)
R-TGATTGGATCAAAATTAAACGTG
 
Perper-20
F-ATGTCAATGTGCACAACACG
(ACAG)15
245
55
27
202-382
0.9525
0.9000
0.08065
0/5
(JX183703)
R-CGTGTATTGGCGACTTTTTATC
 
Perper-26
F-CACCACCCTTACAAAGACGTG
(AC)11
102
53
11
92-113
0.845
0.7500
0.13767
5/5
(JX183704)
R-TTTCACTTGGCGATTAGTATGC
 
Perper-27
F-CCCAATTTAACGGGAACAAC
(AC)27
167
56
13
103-193
0.8449
0.9474
−0.09459
4/5
(JX183705)
R-TTATCATCACCACTTTAAGTTACCC
 
Perper-29
F-TTCCATTTCTAGACATCTCTGTCG
(AC)11 80 56 5 64-78 0.6763 0.95 −0.38314 5/5
(JX183706) R-TCAGGTGACAGCAGCCTGAC

Locus name and GeneBank accession number, primer sequence, motif repetition, clone size, PCR annealing temperature, number of alleles per locus, fragment size range, gene diversity, observed heterozygosity and inbreeding coefficient (* indicates significant values at p < 0.05 and ** at p < 0.001, after multiple tests correction). Cross amplification on P. canaliculus with five individuals.



Article Categories:
  • Short Report

Keywords: Perna perna, Brown mussel, Genetic diversity, Invasive.

Previous Document:  The risk of revision due to dislocation after total hip arthroplasty depends on surgical approach, f...
Next Document:  Regioselective Ortho-Arylation and Alkenylation of N-Alkyl Benzamides with Boronic Acids via Rutheni...