Document Detail


Characterization of genes encoding prolactin and prolactin receptors in starry flounder Platichthys stellatus and their expression upon acclimation to freshwater.
MedLine Citation:
PMID:  22843312     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
This study aims to investigate the genes encoding prolactin (PRL) and prolactin receptors (PRLR) and their tissue-specific expression in starry flounder Platichthys stellatus. Starry flounder PRL gene consisting of five exons encodes an ORF of 212 amino acid residue comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. It showed amino acid identities of 73 % with tuna Thunnus thynnus, 71 % with black porgy Acanthopagrus schlegelii, 69 % with Nile tilapia Oreochromis niloticus, 64 % with pufferfish Takifugu rubripes, 63 % with rainbow trout Oncorhynchus mykiss, and 60 % with mangrove rivulus Kryptolebias marmoratus. Phylogenetic analysis of piscine PRLs also demonstrated a similarity between starry flounder and other teleosts but with a broad distinction from non-teleost PRLs. PRLR gene consists of eight exons encoding a protein of 528 amino acid residues. It showed a similarity to the PRLR2 subtype as reflected by amino acid identities of 54 % with A. schlegelii, 48.1 % with K. marmoratus, 46.3 % with tilapia O. mossambicus, and 46.1 % with O. niloticus PRLR2 as compared to PRLR1 isoform having less than 30 % identities. While mRNA transcript corresponding to PRL was detected only from the pituitary, most of PRLR mRNA was detected in the gill, kidney, and intestine, with a small amount in the ovary. The level of PRL transcript progressively increased during 6 days of acclimation to freshwater and then decreased but stayed higher than that of seawater at 60 days of acclimation. An opposite pattern of changes including a decrease at the beginning of the acclimation but a slight increase in the level osmolality was found as adaptation continued. The results support the osmoregulatory role of PRL signaling in starry flounder.
Authors:
Gyeong Eon Noh; Han Kyu Lim; Jong-Myoung Kim
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-7-28
Journal Detail:
Title:  Fish physiology and biochemistry     Volume:  -     ISSN:  1573-5168     ISO Abbreviation:  -     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-7-30     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100955049     Medline TA:  Fish Physiol Biochem     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Department of Fishery Biology, Pukyong National University, Busan, 608-737, Republic of Korea.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Low level laser effect after micro-marsupialization technique in treating ranulas and mucoceles: a c...
Next Document:  Cloning and expression analysis of follicle-stimulating hormone and luteinizing hormone receptor dur...