Document Detail

Changes in bone structure and the muscle-bone unit in children with chronic kidney disease.
Jump to Full Text
MedLine Citation:
PMID:  23032560     Owner:  NLM     Status:  MEDLINE    
The impact of pediatric chronic kidney disease (CKD) on acquisition of volumetric bone mineral density (BMD) and cortical dimensions is lacking. To address this issue, we obtained tibia quantitative computed tomography scans from 103 patients aged 5-21 years with CKD (26 on dialysis) at baseline and 12 months later. Gender, ethnicity, tibia length, and/or age-specific Z-scores were generated for trabecular and cortical BMD, cortical area, periosteal and endosteal circumference, and muscle area based on over 700 reference subjects. Muscle area, cortical area, and periosteal and endosteal Z-scores were significantly lower at baseline compared with the reference cohort. Cortical BMD, cortical area, and periosteal Z-scores all exhibited a significant further decrease over 12 months. Higher parathyroid hormone levels were associated with significantly greater increases in trabecular BMD and decreases in cortical BMD in the younger patients (significant interaction terms for trabecular BMD and cortical BMD). The estimated glomerular filtration rate was not associated with changes in BMD Z-scores independent of parathyroid hormone. Changes in muscle and cortical area were significantly and positively associated in control subjects but not in CKD patients. Thus, children and adolescents with CKD have progressive cortical bone deficits related to secondary hyperparathyroidism and potential impairment of the functional muscle-bone unit. Interventions are needed to enhance bone accrual in childhood-onset CKD.
Anne Tsampalieros; Heidi J Kalkwarf; Rachel J Wetzsteon; Justine Shults; Babette S Zemel; Bethany J Foster; Debbie L Foerster; Mary B Leonard
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't     Date:  2012-10-03
Journal Detail:
Title:  Kidney international     Volume:  83     ISSN:  1523-1755     ISO Abbreviation:  Kidney Int.     Publication Date:  2013 Mar 
Date Detail:
Created Date:  2013-02-28     Completed Date:  2013-08-20     Revised Date:  2014-06-03    
Medline Journal Info:
Nlm Unique ID:  0323470     Medline TA:  Kidney Int     Country:  United States    
Other Details:
Languages:  eng     Pagination:  495-502     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Bone Density*
Bone and Bones / pathology*
Glomerular Filtration Rate
Muscle, Skeletal / pathology*,  physiopathology
Parathyroid Hormone / blood
Renal Insufficiency, Chronic / blood,  pathology*,  radiography
Tomography, X-Ray Computed
Grant Support
Reg. No./Substance:
0/Parathyroid Hormone

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-journal-id): 0323470
Journal ID (pubmed-jr-id): 5428
Journal ID (nlm-ta): Kidney Int
Journal ID (iso-abbrev): Kidney Int.
ISSN: 0085-2538
ISSN: 1523-1755
Article Information
Download PDF

nihms-submitted publication date: Day: 10 Month: 5 Year: 2014
Electronic publication date: Day: 03 Month: 10 Year: 2012
Print publication date: Month: 3 Year: 2013
pmc-release publication date: Day: 02 Month: 6 Year: 2014
Volume: 83 Issue: 3
First Page: 495 Last Page: 502
PubMed Id: 23032560
ID: 4040969
DOI: 10.1038/ki.2012.347
ID: NIHMS403962

Changes in bone structure and the muscle-bone unit in children with chronic kidney disease
Anne Tsampalieros, MD, MSc12
Heidi J Kalkwarf, PhD3
Rachel J Wetzsteon, PhD2
Justine Shults, PhD24
Babette S Zemel, PhD2
Bethany J. Foster, MD, MSCE56
Debbie L Foerster, BS2
Mary B. Leonard, MD, MSCE24
1Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON
2Department of Pediatrics, Children's Hospital of Philadelphia, Perlman School of Medicine at the University of Pennsylvania
3Department of Pediatrics, Cincinnati Children's Hospital Medical Center
4Department of Biostatistics and Epidemiology, Perlman School of Medicine at the University of Pennsylvania
5Department of Pediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
6Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
Correspondence: Corresponding Author: Mary B. Leonard, MD, MSCE, Children's Hospital of Philadelphia, 34th Street & Civic Center Blvd., CHOP North, Room 870, Philadelphia, PA 19104, Phone: (215) 590-0874, Fax: (215) 590-0604,


Children with chronic kidney disease (CKD) have multiple risk factors for impaired bone accrual, including poor growth, delayed maturation, muscle deficits, decreased physical activity, abnormal mineral metabolism and secondary hyperparathyroidism. We recently reported that childhood-onset CKD was associated with significant deficits in cortical volumetric bone mineral density (BMD), cortical dimensions and muscle area, as measured by peripheral quantitative computed tomography (pQCT).1, 2 CKD was also associated with elevated trabecular BMD in younger participants only. The cross-sectional design limited the assessment of determinants of bone abnormalities and associations between bone and muscle outcomes.

To our knowledge, longitudinal studies of bone accrual in childhood CKD, in the absence of intervening renal transplantation, are limited to series of 7-18 participants.3-6 These studies were further limited by the use of dual energy x-ray absorptiometry (DXA) measures of areal BMD. DXA is a two-dimensional projection technique that obscures distinct CKD effects on trabecular and cortical bone,7 and underestimates volumetric BMD in children with growth failure.8

The objectives of this prospective cohort study were: 1) to assess changes in trabecular and cortical volumetric BMD and cortical dimensions over a one year interval in children and adolescents with mild to severe CKD, 2) to identify correlates of changes in pQCT parameters including CKD progression, intact parathyroid hormone (iPTH) levels, and medications, and 3) to assess the relations between changes in muscle area and bone dimensions (the functional muscle-bone unit) compared with longitudinal data in healthy reference participants.

Participant Characteristics

This report describes 103 CKD participants with two pQCT scans, a median 12.5 months apart [interquartile range (IQR) 12.1, 13.2], including 83 from the prior cross-sectional study.2 The focus of this study is determinants of changes in bone, therefore, this cohort includes an additional 20 participants that were ineligible for the prior study due to a history of solid organ transplantation. All prior renal transplant recipients in this study were on dialysis; median interval since transplantation of 5.1 (IQR 3.9, 7.2) years and a median interval since starting dialysis of 11 (IQR 2, 56) months. Baseline characteristics are summarized in Table 1. The reference participants have been described.2, 9, 10

Compared with the non-dialysis CKD, dialysis participants were significantly older, more likely to be of black race and more likely to have focal segmental glomerulosclerosis (FSGS).

Clinical Course

Laboratory results, estimated glomerular filtration rate (eGFR) and medications are summarized in Table 2. There was a significant decline in renal function over the study period in non-dialysis CKD participants with a median decrease of 2 (IQR -7 to 1) ml/min/1.73m2. Two participants initiated dialysis. Serum iPTH and phosphorus levels increased significantly in the non-dialysis population. The proportion of non-dialysis participants above the normal iPTH range (>65 pg/ml) increased from 39 to 52% over the study. The mean iPTH was above the pediatric Kidney Disease Outcome Quality Initiative (KDOQI) CKD stage-specific target range in 32 (42%) and 13 (50%) of non-dialysis and dialysis participants, respectively, and above the lower European target ranges in 38 (49%) and 18 (69%), respectively.11, 12

Among the 20 participants with a history of prior transplantation, 7 received glucocorticoids and 9 received calcineurin inhibitors during the study period. The remainder of participants treated with glucocorticoids had a diagnosis of FSGS, systemic inflammatory disease or IgA nephropathy.

Six CKD participants sustained a total of 7 fractures (1 tibia/fibula, 1 radius/ulna and 5 foot/toe) during the study interval (57/1,000 patient-years).

Peripheral QCT Outcomes

Table 3 summarizes pQCT Z-scores in CKD participants.

Trabecular BMD

Overall, trabecular BMD Z-scores did not change significantly in all participants combined, or within the non-dialysis and dialysis groups. The multivariate regression model for changes in trabecular BMD Z-score demonstrated that a greater mean iPTH level was associated with a significantly greater change in trabecular BMD Z-score (p<0.001) and this effect was limited to the younger participants (interaction, p=0.001), adjusted for baseline trabecular BMD Z-score. These results are illustrated in Figure 1, according to age < or ≥ the median of 14 years. Changes in trabecular BMD Z-scores were significantly greater in the 11 participants that had elevated iPTH levels by European targets only, compared to the 47 without elevated iPTH by either target (p=0.04). Similar results were obtained in the 45 participants above both targets.

Lower baseline eGFR was associated with greater increases in trabecular BMD Z-score (p<0.03) and analyses stratified on median age suggested this effect was more pronounced in the younger participants. The association between change in trabecular BMD Z-score and baseline eGFR was eliminated when the models were adjusted for mean iPTH levels.

Changes in trabecular BMD-Z scores were not associated with change in eGFR, etiology of CKD, interval since CKD diagnosis, concurrent recombinant growth hormone (rhGH), glucocorticoid, calcitriol or phosphate binder treatment, or physical activity in univariate or multivariate models.

Cortical BMD

At baseline, cortical BMD Z-scores were not significantly lower in CKD participants vs. reference participants overall (p=0.06). Baseline cortical BMD Z-scores were inversely associated with baseline iPTH concentrations in CKD participants (r=-0.25, p=0.01). Cortical BMD Z-scores decreased significantly within all participants combined (p=0.02). In the multivariate regression model of changes in cortical BMD Z-score, higher mean iPTH levels were associated with greater declines in cortical BMD Z-score (p=0.02) and this association was marginally greater in the younger participants (interaction p=0.05). Among participants < 14 years of age, a mean iPTH level greater than the KDOQI target range was associated with a 0.29 greater decline in cortical BMD Z-score compared with those within or below the target range. Declines in cortical BMD Z-scores were significantly greater in the 11 participants that had elevated iPTH levels by European targets only, compared to the 47 without elevated iPTH by either target (p=0.005). Similar results were obtained in the 45 participants above both targets.

Changes in cortical BMD Z-scores were not associated with baseline eGFR, change in eGFR, underlying renal disease, interval since CKD diagnosis, medications (concurrent rhGh, glucocorticoid, calcitriol or phosphate binders) or physical activity.

Cortical Dimensions

At baseline, section modulus (a summary measure of cortical dimensions and strength), cortical area, and periosteal and endosteal circumference Z-scores were significantly lower in the CKD participants (all p<0.01), vs. reference participants. At baseline, iPTH levels were positively associated with endosteal circumference Z-scores (r=0.30, p=0.003) and negatively with cortical area Z-score (r=-0.25, p=0.01) but were not associated with periosteal circumference or section modulus Z-scores (p>0.4).

Over the follow-up interval, cortical area Z-scores decreased significantly within non-dialysis CKD and dialysis participants. Periosteal circumference Z-scores decreased significantly in all participants combined (p<0.009).

In the multivariable model for changes in cortical area Z-score, baseline eGFR, change in eGFR, mean iPTH levels, disease characteristics and medications were not significant. The multivariable models for changes in endosteal and periosteal circumference Z-scores both demonstrated a positive association with higher mean iPTH levels (p=0.05 and p=0.017). None of the changes in cortical dimensions was associated with baseline or changes in renal function, diagnostic category, physical activity, or glucocorticoid, calcitriol or phosphate binder therapy.

The analyses of rhGH associations with bone outcomes were limited to the 58 participants < 16 years of age, including 8 treated with rhGH for a minimum of 6 months over the study interval. Concurrent rhGH therapy was associated with greater increases in section modulus [0.51 (95% C.I. 0.22, 0.79, p=0.001)] and cortical area Z-scores [0.27 (-0.05, 0.60), p=0.10)]; however, the results were significant for section modulus only. Concurrent rhGH was not associated with significant changes in periosteal [0.10 (-0.15, 0.35)] or endosteal [0.15 (-0.10, 0.40)] circumference Z-scores.

Muscle and Fat Cross-Sectional Area Z-scores

At the baseline visit, mean muscle area Z-scores in CKD participants were lower vs. reference participants (p=0.001). Over the follow-up period, there was a significant decrease in muscle area Z-scores in non-dialysis CKD participants and a non-significant decrease in dialysis participants. In the multivariable model for changes in muscle area Z-score, none of the participant, disease or treatment characteristics were significant.

At the baseline visit, mean fat area Z-scores in CKD participants were not significantly different vs. reference participants and the small decline was not significant. In the multivariable regression model for changes, concurrent rhGH therapy was associated with a decrease in fat area Z-scores (p=0.002).

Muscle Force and Physical Activity

Table 3 summarizes muscle force Z-scores and physical activity results. At baseline, CKD participants had significantly lower muscle force Z-scores vs. reference participants (p<0.001). Muscle force adjusted for muscle CSA was 11.9% (95% CI: 4.7, 18.5; p=0.002) lower in non-dialysis CKD participants and 16.2% (5.1, 26, p=0.006) lower in dialysis CKD participants, compared with the reference participants. Muscle force did not change significantly over the study interval.

At baseline, dialysis participants reported significantly fewer hours per week of total and moderate-to-high impact physical activity, vs. non-dialysis CKD participants and vs. reference participants (all comparisons p<0.01). Reference participants reported a median of 12.7 (IQR 8.1, 20.6) total hours per week and 5.7 (IQR 3.0, 9.7) moderate-to-high impact hours per week. In both CKD groups physical activity declined over the study interval.

Assessment of the Functional Muscle Bone Unit

In order to determine if changes in muscle area Z-scores in CKD participants were associated with the expected changes in cortical Z-scores, i.e. the “functional muscle-bone unit”,13 the 12 month changes in cortical area Z-scores were compared in the CKD participants and the 269 reference participants enrolled in the longitudinal substudy. These analyses were adjusted for baseline muscle area and baseline cortical area Z-scores, age and tibia growth. Changes in cortical area Z-scores were positively associated with changes in muscle area Z-scores in the reference participants (p<0.001); however, this association was absent in CKD participants (interaction p<0.001) (Figure 2).


This is the first study to examine changes in trabecular and cortical volumetric BMD, cortical dimensions, muscle area and muscle strength in childhood CKD. Secondary hyperparathyroidism in CKD was associated with greater increases in trabecular BMD Z-scores and greater declines in cortical BMD Z-scores in younger participants. Cortical BMD, cortical area, and periosteal circumference Z-scores decreased significantly over one year. The positive association between changes in muscle and cortical area Z-scores observed in reference participants was absent in CKD.

Prior longitudinal bone imaging studies in children with CKD were limited to DXA and quantitative ultrasound methods.3-6 These studies were further limited by small sample sizes and inadequate reference data. Longitudinal studies using pQCT in CKD are limited to two radius studies in older adults: Obatake et al reported decreases in trabecular and cortical BMD over one year in 53 pre-dialysis patients (mean age 61 years).14 Fujimore et al reported decreases in cortical BMD and cortical bone area over two years in 53 hemodialysis patients (mean age 67 years).15 Given the absence of reference participants, it is not known if these changes were greater than expected with aging.

The association between hyperparathyroidism and increased trabecular BMD in younger children with CKD has been described in prior cross-sectional studies,2, 10, 16-19 and confirmed in this longitudinal study. We hypothesized that the elevated trabecular BMD in the younger children was due to iPTH and CKD effects at the metaphysis, with impaired resorption of the dense metaphyseal spongiosa.20

Our prior cross-sectional study demonstrated an inverse association between iPTH levels and cortical volumetric BMD across all ages; however, this longitudinal study only detected this association in younger participants. The study by Obatake et al failed to show an association between iPTH levels and changes in cortical BMD while the study by Fujimore et al detected an inverse association in males only.14, 15 Periosteal and endosteal circumference both increased with higher mean levels of iPTH in our study. The increase in periosteal circumference is consistent with prior human and animal studies of PTH therapy.21, 22 The increase in endosteal circumference is consistent with a study of bone biopsies in adult dialysis patients, demonstrating that hyperparathyroidism was associated with endocortical resorption.23

The European guidelines advise lower target PTH levels, compared with KDOQI. The observation that PTH levels above the European target (but within the KDOQI target range) were associated with changes in trabecular and cortical BMD, compared with participants that were not above the European target provides preliminary support for these lower targets.12 Prior studies have shown variable results with different PTH assay methods; 24 however, our study used the same assay throughout and confirmed the results using the bioactive 1-84 PTH level.

This study demonstrated that concurrent rhGH therapy was associated with preservation of section modulus Z-scores and greater declines in fat area Z-scores. However, the results must be interpreted with caution given the small number of participants treated with rhGH and our failure to detect significant associations with changes in periosteal and endosteal circumference or muscle area Z-scores. To our knowledge pediatric CKD BMD studies of growth hormone therapy are limited to DXA imaging. 5, 6, 25-27 These studies yielded conflicting results, likely due to variable reference data, and adjustments for short stature and intercurrent growth. None of these studies examined volumetric BMD or cortical dimensions. In contrast, a radius pQCT study by Schweizer et al28, in prepubertal children with growth hormone deficiency demonstrated that cortical total area (a measure of periosteal dimensions) increased significantly relative to height age; marrow area (a measure of endosteal dimensions) and cortical area did not change significantly after one year of rhGH therapy. This is consistent with our observation that rhGH was associated with improvements in cortical dimensions. Larger controlled studies are needed to establish rhGH effects on bone accrual in CKD.

The longitudinal data in our pediatric CKD cohort demonstrated significant and worsening cortical area deficits over one year. Given the strong association between cortical bone strength and muscle mass during normal growth (Figure 2A), we examined the associations between cortical bone and muscle area. The positive association was absent in CKD (Figure 2B). This may be explained by lower muscle force relative to muscle area in CKD 13, 29 and less physical activity.30, 31 Prior studies have demonstrated muscle abnormalities including muscle atrophy, myopathy, and reduced physical functioning in pediatric dialysis patients.19, 32

Prior pQCT studies in adults with pre-dialysis CKD33, and those on maintenance hemodialysis34 demonstrated that decreased cortical thickness and BMD were significantly associated with greater odds of fracture. While the sample size is inadequate to address age, sex, and skeletal site specific fracture rates, it is noteworthy that 6 of 103 CKD participants had a fracture during the study interval. This rate is higher than observed in healthy pediatric population-based studies at any age in males or females.35

The wide spectrum of underlying renal disease and duration, and differences in participant treatment characteristics is a significant limitation of this study. The study included participants with conditions and medications that can impact bone health, including glucocorticoids, calcineurin inhibitors and rhGH. Furthermore, the majority of dialysis participants had a history of prior allograft failure. The subgroup analyses had limited power and we were unable to define associations between disease characteristics and changes in bone outcomes. Therefore, the results should be considered with caution and used to generate hypotheses for future studies.

A second limitation is the lack of bone biopsy data, precluding measures of trabecular bone microarchitecture, turnover or mineralization. The term CKD-Mineral and Bone Disorder (CKD-MBD) describes a broad systemic disorder of mineral and bone metabolism, as well as vascular and soft-tissue calcification.36 We were also unable to address extra-skeletal calcification. A final limitation is the lack of measures of FGF-23. However, a recent bone biopsy study reported that FGF-23 levels were not associated with defective mineralization.37 Given that a recent biopsy study in 52 children with pre-dialysis CKD reported evidence of defective mineralization in 29% of patients with stage 2, 42% with stage 3, and 79% with stage 4/5 CKD, future studies comparing QCT scans and bone biopsies are needed to determine the sensitivity of QCT to identify mineralization defects.37

The study design has multiple important strengths. It is the largest longitudinal bone study of childhood onset CKD and the first to use pQCT to quantify changes in bone and muscle. It included a large robust longitudinal reference sample permitting adjustment for age, sex, race, tibia length and muscle area in the assessment of bone outcomes. Furthermore the use of Z-scores for volumetric BMD, cortical dimensions, and muscle deficits provide the first evidence of the clinical magnitude of the deficits.

We recently compared DXA and pQCT results in a cross-sectional analyses of 88 participants.38 While pQCT measures of trabecular BMD were associated with DXA measures of lumbar spine BMD (R2=0.13) and pQCT measures of cortical bone mineral content were associated with DXA whole body bone mineral content (R2=0.41), DXA measures were not associated with iPTH levels. Therefore, the clinical utility of DXA remains unproven.

In summary, our data demonstrated that children and adolescents with CKD have progressive declines in cortical bone accrual at one year follow-up, partially related to hyperparathyroidism and muscle deficits. Future studies are needed to assess the fracture implications of these findings, and to identify therapies to enhance bone quality in children with CKD.

Materials and Methods
Study participants

The study cohort consisted of children and adolescents aged 5-21 years with CKD (baseline eGFR < 90 ml/min/1.73m2) enrolled in a larger study of bone health in CKD at Children's Hospital of Philadelphia (CHOP) and Cincinnati Children's Hospital and Medical Center (CCHMC).1, 2, 38-40 Patients were ineligible for this study if they had a history of chronic conditions unrelated to CKD that may impact bone health or had a functioning renal allograft.

This study population was compared to a reference population of 903 healthy children and adolescents from CHOP recruited from general pediatric practices in the greater Philadelphia area.2, 10 Reference participants were excluded for medical history of illness or medications that could affect growth and development. A total of 269 completed a 12 month visit in a longitudinal substudy.10, 41

Study approval was obtained from the Institutional Review Boards at CHOP and CCHMC. Informed consent was obtained directly from study patients ≥ 18 years of age, and assent as well as parental consent in those < 18 years of age.

Anthropometry, Sexual Maturity and Race

Height was measured using a stadiometer (Holtain, Crymych, UK) and weight with a digital scale (Scaletronix, White Plains, New York). Tibia length was measured with a segmometer. Pubertal development was assessed using a self-assessment questionnaire and classified according to Tanner stage.42, 43 Participant's race was categorized by parents or the participant according to the National Institutes of Health categories.

Physical Activity Questionnaire

The physical activity questionnaire was designed to assess biomechanical impact.10, 44, 45 The questionnaire was introduced mid-study in the reference participants and completed in 401 participants.

CKD Disease Characteristics and Medications

Medical charts were reviewed for the date of diagnosis, cause of underlying renal disease, fracture history, medications, and dialysis and transplant history. Underlying renal disease was categorized as congenital anomalies of the kidney and urinary tract (CAKUT), FSGS, systemic inflammatory disease and other. All fracture events during the study were confirmed by review of radiology reports.

Peripheral Quantitative Computed Tomography

Bone, muscle and fat measures were obtained in the left tibia using a Stratec XCT2000 pQCT device (Orthometrix, White Plains, NY). Scan parameters, software and calibration procedures have been described.2, 10 Bone measurements were obtained at the 3% metaphyseal site for trabecular volumetric BMD (mg/cm3) and at the 38% diaphyseal site for cortical volumetric BMD, (mg/cm3), periosteal and endosteal circumference (mm), cortical cross sectional area (mm2), and polar section modulus (mm3). Fat and muscle area (mm3) were assessed 66% proximal to the distal physis. The manufacturer's hydroxyapatite phantom was scanned daily. In our laboratory, the coefficient of variation (CV) ranged from 0.5 to 1.6% for pQCT outcomes in children and adolescents.

Measurement of Muscle Force

Muscle force in ankle dorsiflexion was assessed using isometric dynamometry (Biodex Medical Systems, Inc, Shirley, NY).46 The Biodex measures were performed in 280 reference participants and in the CKD participants at the baseline and 12 month follow-up visit at CHOP only.

Laboratory Measurements

Non-fasting blood chemistries and iPTH were measured at baseline, 6 and 12 months in non-dialysis participants and baseline, 3, 6, and 12 months in dialysis participants.

Serum bicarbonate (mmol/L), calcium (mg/dL), phosphorus (mg/dL), and albumin (g/dL) concentrations were measured in clinical laboratories using standard methods and calcium levels were adjusted for albumin levels.47 Plasma PTH (pg/ml) was measured using two different immunoradiometric assays (IRMA) with I125I- labeled tracer (Scantibodies Clinical Laboratory, Santee, CA, USA). The traditional second generation IRMA measured iPTH. The third generation assay used a specific polyclonal PTH antibody directed against the most N-terminal PTH region as tracer antibody in order to measure the bioactive 1-84 PTH molecule. The intra-assay CV for the intact and bioactive PTH assays were 3 to 5% and 3 to 10% respectively. 48

Serum creatinine (mg/dL) was measured by spectrophotometric enzymatic assay (Vitros, Johnson & Johnson Co, Rochester, NY) with a CV of 1% to 5%. Estimated GFR (ml/min/1.73m2) was calculated based on height and serum creatinine using the pediatric estimating equation from the Chronic Kidney Disease in Children prospective cohort study 49. CKD stage was classified according to National Kidney Foundation guidelines.50 Dialysis patients were assigned an eGFR of 7.5 ml/min/1.73m2 for models examining baseline eGFR as a continuous variable, and for calculating change in eGFR in the two participants that started dialysis during the study.

Statistical Analysis

Analysis were performed using Stata 11.0 (Stata Corp., College Station, TX, USA). A p value < 0.05 was considered statistically significant and two sided tests of hypotheses were used throughout. Continuous variables were expressed as means ± SD or median (IQR) if not normally distributed. Group differences were assessed using Student's t test or the Wilcoxon rank sum test. Changes within the CKD patients were tested using the paired t-test or the Wilcoxon signed rank test. Differences in proportions were tested using the chi-square test. Correlations between continuous variables were assessed by Pearson or Spearman's correlations. Although this study included multiple comparison, we did not apply a Bonferroni correction because this assumes the multiple outcomes are independent.51 The majority of bone and muscle Z-score were highly correlated. Rather, we evaluated the results for internal consistency and interpreted isolated results with caution.

Age- and sex- specific height and BMI Z-scores were calculated using national data. 52 All PTH levels were log transformed and a mean value created for each individual over the study interval, and used in the longitudinal models. The pQCT outcomes were converted to race and sex specific Z-scores using the LMS method based on the reference participants, as described.2, 10, 53, 54 This method accounts for the non-linearity, heteroscedasticity and skew of bone data during growth.55, 56 Trabecular and cortical BMD were assessed relative to age. Cortical geometry, muscle and fat outcomes were correlated with tibia length (all p<0.0001); therefore, the Z-scores were generated relative to tibia length and further adjusted for age and tibia length using linear regression analyses.

Changes in pQCT Z-scores within the CKD participants were annualized (change per 12 months) and assessed using multivariate regression models. Given the differences in disease and participant characteristics in the non-dialysis and dialysis participants, we stratified the annualized changes in bone outcomes (Table 3). However, the associations between changes in bone outcomes and exposure variables did not differ between the non-dialysis and dialysis participants. Therefore, multivariate regression models of changes examined the entire cohort together. The following covariates were tested for each pQCT outcome- baseline outcome Z-score, study location, age, sex, race, Tanner stage, disease characteristics, concurrent medications, and baseline and change values for eGFR and physical activity. Bone models also included mean iPTH levels. All of the models that included the iPTH covariate were repeated using 1-84 or 7-84 PTH levels, yielding the same results (data not shown). The correlations between iPTH, 1-84 PTH and 7-84 PTH exceeded 0.98; therefore it was not possible to assess independent associations. The 1-84/7-84 ratio was not significant in any longitudinal models.

Secondary analyses were performed comparing pQCT Z-scores in participants that were above the European iPTH target but within KDOQI target range, vs. those without elevated iPTH by either target.

The associations between changes in muscle and cortical area Z-scores were compared in the CKD participants and the longitudinal subset of reference participants using multivariable regression analysis. Models for peak muscle torque were compared in the CKD and reference participants adjusted for age, sex, race, tibia length and muscle area.57


FN2Disclosures: None.

Funding Sources: NIH R01-DK060030, R01-HD040714, K24-DK076808, UL1-RR-024134 and UL1-RR-026314 and the University of Ottawa Faculty of Medicine

1. Foster BJ,Kalkwarf HJ,Shults J,et al. Association of chronic kidney disease with muscle deficits in childrenJ Am Soc NephrolYear: 20112237738621115614
2. Wetzsteon RJ,Kalkwarf HJ,Shults J,et al. Volumetric bone mineral density and bone structure in childhood chronic kidney diseaseJ Bone Miner ResYear: 2011262235224421590737
3. Pluskiewicz W,Adamczyk P,Drozdzowska B,et al. Skeletal status in adolescents with end-stage renal failure: a longitudinal studyOsteoporos IntYear: 20051628929515221204
4. Swolin-Eide D,Magnusson P,Hansson S. Bone mass, biochemical markers and growth in children with chronic kidney disease: a 1-year prospective studyActa PaediatrYear: 20079672072517381473
5. Johnson VL,Wang J,Kaskel FJ,et al. Changes in body composition of children with chronic renal failure on growth hormonePediatr NephrolYear: 20001469570010912545
6. Van Dyck M,Gyssels A,Proesmans W,et al. Growth hormone treatment enhances bone mineralisation in children with chronic renal failureEur J PediatrYear: 200116035936311421415
7. Parfitt AM. A structural approach to renal bone diseaseJ Bone Miner ResYear: 199813121312209718188
8. Zemel BS,Leonard MB,Kelly A,et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in childrenJ Clin Endocrinol MetabYear: 2010951265127320103654
9. Leonard MB,Elmi A,Mostoufi-Moab S,et al. Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adultsJ Clin Endocrinol MetabYear: 2010951681168920157194
10. Terpstra AM,Kalkwarf HJ,Shults J,et al. Bone Density and Cortical Structure after Pediatric Renal TransplantationJ Am Soc NephrolYear: 2012
11. K/DOQI Clinical Practice guidelines for bone metabolism and disease in children with chronic kidney diseaseAm J Kidney DisYear: 200546Suppl 1110315983951
12. Klaus G,Watson A,Edefonti A,et al. Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelinesPediatr NephrolYear: 20062115115916247644
13. Schoenau E,Neu CM,Beck B,et al. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unitJ Bone Miner ResYear: 2002171095110112054165
14. Obatake N,Ishimura E,Tsuchida T,et al. Annual change in bone mineral density in predialysis patients with chronic renal failure: significance of a decrease in serum 1,25-dihydroxy-vitamin DJ Bone Miner MetabYear: 200725747917187197
15. Fujimori A,Okada S,Sakai M,et al. Relationship between biochemical markers and radial cortical bone changes in hemodialysis patientsNephron Clin PractYear: 2011118c37537921325869
16. Behnke B,Altrogge H,Delling G,et al. Bone mineral density in pediatric patients after renal transplantationClin NephrolYear: 19964624298832146
17. Behnke B,Kemper MJ,Kruse HP,et al. Bone mineral density in children with primary hyperoxaluria type INephrol Dial TransplantYear: 2001162236223911682674
18. Lima EM,Goodman WG,Kuizon BD,et al. Bone density measurements in pediatric patients with renal osteodystrophyPediatr NephrolYear: 20031855455912712376
19. Tenbrock K,Kruppa S,Mokov E,et al. Analysis of muscle strength and bone structure in children with renal diseasePediatr NephrolYear: 20001466967210912540
20. Mehls O,Ritz E,Krempien B,et al. Roentgenological signs in the skeleton of uremic children. An analysis of the anatomical principles underlying the roentgenological changesPediatr RadiolYear: 197311831904773700
21. Fox J,Miller MA,Newman MK,et al. Effects of daily treatment with parathyroid hormone 1-84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeysBoneYear: 20074132133017573250
22. Ma YL,Marin F,Stepan J,et al. Comparative effects of teriparatide and strontium ranelate in the periosteum of iliac crest biopsies in postmenopausal women with osteoporosisBoneYear: 20114897297821262402
23. Schober HC,Han ZH,Foldes AJ,et al. Mineralized bone loss at different sites in dialysis patients: implications for preventionJ Am Soc NephrolYear: 19989122512339644632
24. Martin KJ,Gonzalez EA. Parathyroid hormone assay: problems and opportunitiesPediatr NephrolYear: 2007221651165417574479
25. Boot AM,Nauta J,de Jong MC,et al. Bone mineral density, bone metabolism and body composition of children with chronic renal failure, with and without growth hormone treatmentClin Endocrinol (Oxf)Year: 19984966567210197084
26. van der Sluis IM,Boot AM,Nauta J,et al. Bone density and body composition in chronic renal failure: effects of growth hormone treatmentPediatr NephrolYear: 20001522122811149115
27. Lanes R,Gunczler P,Orta N,et al. Changes in bone mineral density, growth velocity and renal function of prepubertal uremic children during growth hormone treatmentHorm ResYear: 1996462632688982736
28. Schweizer R,Martin DD,Schwarze CP,et al. Cortical bone density is normal in prepubertal children with growth hormone (GH) deficiency, but initially decreases during GH replacement due to early bone remodelingJ Clin Endocrinol MetabYear: 2003885266527214602760
29. Ruth EM,Weber LT,Schoenau E,et al. Analysis of the functional muscle-bone unit of the forearm in pediatric renal transplant recipientsKidney IntYear: 2004661694170615458468
30. Clapp EL,Bevington A,Smith AC. Exercise for children with chronic kidney disease and end-stage renal diseasePediatr NephrolYear: 2011
31. Weaver DJ Jr,Kimball TR,Knilans T,et al. Decreased maximal aerobic capacity in pediatric chronic kidney diseaseJ Am Soc NephrolYear: 20081962463018184856
32. Alayli G,Ozkaya O,Bek K,et al. Physical function, muscle strength and muscle mass in children on peritoneal dialysisPediatr NephrolYear: 20082363964418197422
33. Jamal SA,Cheung AM,West SL,et al. Bone mineral density by DXA and HR pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney diseaseOsteoporos IntYear: 2012
34. Jamal SA,Gilbert J,Gordon C,et al. Cortical pQCT measures are associated with fractures in dialysis patientsJ Bone Miner ResYear: 20062154354816598374
35. Cooper C,Dennison EM,Leufkens HG,et al. Epidemiology of childhood fractures in Britain: a study using the general practice research databaseJ Bone Miner ResYear: 2004191976198115537440
36. Moe S,Drueke T,Cunningham J,et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO)Kidney IntYear: 2006691945195316641930
37. Wesseling-Perry K,Pereira RC,Tseng CH,et al. Early skeletal and biochemical alterations in pediatric chronic kidney diseaseClin J Am Soc NephrolYear: 2012714615222052943
38. Griffin LM,Kalkwarf HJ,Zemel BS,et al. Assessment of dual-energy x-ray absorptiometry measures of bone health in pediatric chronic kidney diseasePediatr NephrolYear: 2012
39. Kalkwarf H,Denburg M,Strife C,et al. Vitamin D Status in Children and Adolescents with Chronic Kidney DiseaseYear: 2011
40. Tuchman S,Thayu M,Shults J,et al. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic diseaseJ PediatrYear: 200815348449018555484
41. Thayu M,Denson LA,Shults J,et al. Determinants of changes in linear growth and body composition in incident pediatric Crohn's diseaseGastroenterologyYear: 201013943043820417635
42. Tanner J,Whitehouse R,Marshall W,et al. Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method)Academic PressLondon EnglandYear: 1975
43. Morris N,Udry J. Validation of a self-administered instrument to assess stage of adolescent developmentJ Youth AdolescYear: 1980
44. Aaron DJ,Kriska AM,Dearwater SR,et al. Reproducibility and validity of an epidemiologic questionnaire to assess past year physical activity in adolescentsAm J EpidemiolYear: 19951421912017598119
45. Kemper HC,Bakker I,Twisk JW,et al. Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone massBoneYear: 20023079980411996923
46. Wetzsteon RJ,Zemel BS,Shults J,et al. Mechanical loads and cortical bone geometry in healthy children and young adultsBoneYear: 2011481103110821241839
47. Serum-CalciumLancetYear: 1979185885986100
48. Gao P,Scheibel S,D'Amour P,et al. Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1-84: implications for improvement of accurate assessment of parathyroid functionJ Bone Miner ResYear: 20011660561411315988
49. Schwartz GJ,Munoz A,Schneider MF,et al. New equations to estimate GFR in children with CKDJ Am Soc NephrolYear: 20092062963719158356
50. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratificationAm J Kidney DisYear: 200239S126611904577
51. Perneger TV. What's wrong with Bonferroni adjustmentsBMJYear: 1998316123612389553006
52. Ogden CL,Kuczmarski RJ,Flegal KM,et al. Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics versionPediatricsYear: 2002109456011773541
53. Dubner SE,Shults J,Baldassano RN,et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn's diseaseGastroenterologyYear: 200913612313019026647
54. Wetzsteon RJ,Shults J,Zemel BS,et al. Divergent effects of glucocorticoids on cortical and trabecular compartment BMD in childhood nephrotic syndromeJ Bone Miner ResYear: 20092450351319016583
55. Cole TJ. The LMS method for constructing normalized growth standardsEur J Clin NutrYear: 19904445602354692
56. Cole T,Green P. LMS Chartmaker ProYear: 2006
57. Wetzsteon R,Zemel B,Shults J,et al. Mechanical loads and cortical bone geometry in healthy children and young adultsBoneYear: 201148110321241839

Article Categories:
  • Article

Previous Document:  Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress res...
Next Document:  Foamlike Porous Spinel Mn(x) Co(3-x) O(4) Material Derived from Mn(3) [Co(CN)(6) ](2) ?nH(2) O Nanoc...