Document Detail

Challenges in the diagnosis & treatment of miliary tuberculosis.
Jump to Full Text
MedLine Citation:
PMID:  22771605     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Miliary tuberculosis (TB) is a potentially lethal disease if not diagnosed and treated early. Diagnosing miliary TB can be a challenge that can perplex even the most experienced clinicians. Clinical manifestations are nonspecific, typical chest radiograph findings may not be evident till late in the disease, high resolution computed tomography (HRCT) shows randomly distributed miliary nodules and is relatively more sensitive. Ultrasonography, CT and magnetic resonance imaging (MRI) are useful in discerning the extent of organ involvement by lesions of miliary TB in extra-pulmonary locations. Fundus examination for choroid tubercles, histopathological examination of tissue biopsy specimens, conventional and rapid culture methods for isolation of Mycobacterium tuberculosis, drug-susceptibility testing, along with use of molecular biology tools in sputum, body fluids, other body tissues are useful in confirming the diagnosis. Although several prognostic markers have been described which predict mortality, yet untreated miliary TB has a fatal outcome within one year. A high index of clinical suspicion and early diagnosis and timely institution of anti-tuberculosis treatment can be life-saving. Response to first-line anti-tuberculosis drugs is good but drug-induced hepatotoxicity and drug-drug interactions in human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients pose significant problems during treatment. However, sparse data are available from randomized controlled trials to define the optimum regimen and duration of treatment in patients with drug-sensitive as well as drug-resistant miliary TB, including those with HIV/AIDS.
Authors:
Surendra K Sharma; Alladi Mohan; Abhishek Sharma
Related Documents :
21663615 - Bioethical differences between drug addiction treatment professionals inside and outsid...
22796785 - Investigating the acoustic release of doxorubicin from targeted micelles.
8240375 - Angiotensin converting enzyme inhibitors or dup753 prevent neointimal formation followi...
22816135 - Nanoparticle-assisted combination therapies for effective cancer treatment.
7036805 - Efficacy of ethylenediamine dihydrochloride in dogs and cats.
11360705 - Difficult behaviour in drug-misusing and non-drug-misusing patients in general practice...
Publication Detail:
Type:  Journal Article; Review    
Journal Detail:
Title:  The Indian journal of medical research     Volume:  135     ISSN:  0971-5916     ISO Abbreviation:  Indian J. Med. Res.     Publication Date:  2012 May 
Date Detail:
Created Date:  2012-07-09     Completed Date:  2012-12-31     Revised Date:  2013-07-12    
Medline Journal Info:
Nlm Unique ID:  0374701     Medline TA:  Indian J Med Res     Country:  India    
Other Details:
Languages:  eng     Pagination:  703-30     Citation Subset:  IM    
Affiliation:
Department of Medicine, All India Institute of Medical Sciences, New Delhi, India. sksharma.aiims@gmail.com
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Antitubercular Agents* / adverse effects,  therapeutic use
Arthritis, Rheumatoid / complications
HIV / isolation & purification
HIV Infections / complications
Humans
Immunosuppression
Magnetic Resonance Imaging
Mycobacterium tuberculosis / isolation & purification*,  pathogenicity
Tuberculosis, Miliary / complications,  diagnosis*,  drug therapy*,  microbiology,  pathology
Ultrasonography / methods
Chemical
Reg. No./Substance:
0/Antitubercular Agents
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Indian J Med Res
Journal ID (iso-abbrev): Indian J. Med. Res
Journal ID (publisher-id): IJMR
ISSN: 0971-5916
Publisher: Medknow Publications & Media Pvt Ltd, India
Article Information
Download PDF
Copyright: © The Indian Journal of Medical Research
open-access:
Accepted Day: 02 Month: 8 Year: 2011
Print publication date: Month: 5 Year: 2012
Volume: 135 Issue: 5
First Page: 703 Last Page: 730
ID: 3401706
PubMed Id: 22771605
Publisher Id: IJMR-135-703

Challenges in the diagnosis & treatment of miliary tuberculosis
Surendra K. Sharmaaff1
Alladi Mohan*
Abhishek Sharma**
Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
*Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
**Department of Medicine, University of Medicine, Pleven, Bulgaria
Correspondence: Reprint requests: Dr. Surendra K. Sharma, Professor & Head, Department of Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India e-mail: sksharma.aiims@gmail.com

Introduction

In 1700, John Jacob Manget1 described a form of disseminated tuberculosis (TB) and likened the tiny tubercles evident on gross pathological examination to that of innumerable millet seeds in size and appearance. He coined the term miliary TB (derived from the Latin word miliarius, meaning related to millet seed) to denote this fatal form of disseminated TB. Miliary TB results from a massive lymphohaematogeneous dissemination from a Mycobacterium tuberculosis-laden focus24 (Fig. 1).

Miliary TB still remains a perplexing disease that continues to elude the most erudite and experienced clinicians and is a diagnostic and therapeutic challenge. Mortality from this disease has remained high despite effective therapy being available. The myriad clinical manifestations, atypical radiographic findings and difficulties in establishing TB as the aetiological diagnosis, among others, are challenges in diagnosis and treatment of miliary TB (Table I).

In this review, we first provide an overview regarding the epidemiology, current understanding of key pathogenetic mechanisms, molecular basis of dissemination, predisposing and associated conditions, the varied clinical manifestations that have been documented in miliary TB, and then the challenges in the diagnosis and treatment of miliary TB are addressed.

Burden of the problem

Mortality from this disease has remained high despite effective therapy being available. For a long time, miliary TB has been considered to be a childhood disease. However, during the last three decades, it is increasingly being recognized in adults as well. Several reasons are thought to be responsible for this changing epidemiological trend. These include: human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), ever increasing list of causes of immunosuppression, such as use of biologicals and immunosuppressive drugs for treatment of various medical disorders, increasing occurrence of organ transplantation, chronic haemodialysis programme, among others.

Interpretation of published epidemiological data on miliary TB is hampered by certain methodological issues. Even after giving allowance for non-availability of community based data on the prevalence, different denominators used, lack of a “gold standard” for the diagnosis and variation in the nature of invasive methods used for securing tissue to confirm the diagnosis, sparse autopsy data regarding miliary TB in children certain conclusions can be drawn regarding the epidemiology of miliary TB. Among immunocompetent adults, miliary TB accounts for less than 2 per cent of all cases of TB and up to 20 per cent of all extra-pulmonary TB (EPTB) cases in various clinical studies512. In late HIV infection, EPTB accounts for more than 50 per cent of all cases of TB4. In autopsy studies1319, the corresponding figures have been higher; miliary TB accounts for 0.3 to 13.3 per cent of all autopsies and 11.9 to 40.5 per cent of all cases of TB. In the pre-antibiotic era, miliary TB was predominantly a disease of infants and children20, 21. Currently, two peaks are evident- one involving adolescents and young adults and another later in life among elderly persons4, 9, 11, 2244. Males seem to be more frequently affected by miliary TB in paediatric as well as adult series4, 9, 11, 2244. A few recent adult series on miliary TB9, 19, 29, 33 describe a female preponderance probably reflecting increased awareness and utilization of health services by women. In USA, a higher incidence of miliary TB has been described in African Americans in some of the earlier publications though such a trend is not evident from recent data4, 24, 34.

Predisposing, associated conditions

Several predisposing or associated conditions have been described in patients with miliary TB. These include childhood infections, malnutrition, HIV/AIDS, alcoholism, diabetes mellitus, chronic kidney disease, dialysis, post-gastrectomy, organ transplantation, connective tissue disorders, pregnancy, postpartum, presence of an underlying malignancy, and silicosis4. However, their pathogenetic significance is not clear.

In addition to corticosteroids, immunosuppressive and cytotoxic drugs are known to predispose to the development of miliary TB, use of immunomodulator drugs (biologicals) has been documented to cause fatal TB including miliary TB in rheumatoid arthritis4548. These include anti-tumour necrosis factor (TNF) agents infliximab48, etanercept47, and adalimumab46. In a recent prospective study among patients who received anti-TNF therapy45, EPTB constituted 62 per cent of all cases of TB; disseminated and miliary TB accounted for 27.5 per cent of all TB cases, 44 per cent of extra-pulmonary TB. The rate of development of TB was higher for adalimumab and infliximab than for etanercept. The median time to development of TB was lowest for infliximab compared with etanercept and adalimumab (Table II). Patients with non-white ethnicity had a 6-fold higher risk of TB compared with white patients45.

Several procedures and interventions have been implicated in the causation of miliary TB. These include ureteral catheterization, extracorporeal shockwave lithotripsy, laser lithotripsy, cardiac valve homograft replacement, intravesical bacille Calmette-Guerin (BCG) therapy for urinary bladder carcinoma4953.

Immunopathogenesis

The inadequacy of effector T-cell response in containment of M. tuberculosis is thought to be responsible for the development of miliary TB5457. The abundance of Th1 and Th2 polarized effector T (Teff) cells in the peripheral blood and local disease site(s) among patients with miliary TB suggest that miliary TB probably represents the Th2 end of the spectrum56, 57. Interleukin-4 (IL-4), with its ability to downregulate inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2) and macrophage activation, may play an important role in the events that determine whether the infection becomes latent or progressive4, 54, 55. M. tuberculosis can either fail to evoke the protective response or can drive the protective mechanisms and then deliberately ‘sabotage’ them leading to progressive disease5557. In miliary TB, frequency of regulatory T (Treg) cells (CD4+CD25+FoxP3+) and higher levels of FoxP3 mRNA were significantly increased in local disease site specimens57. Further, FoxP3+ Treg cells obtained from the bronchoalveolar lavage (BAL) fluid of patients with miliary TB predominantly produced interleukin-10 (IL-10) and could suppress the autologous T-cell proliferation in response to M. tuberculosis antigen56. In miliary TB, the attempt by the host to selectively recruit the Teff cells at the pathologic site, however, fails to provide an adequate level of effector immunity at the disease site due to efficient and comparable homing of Treg cells (FoxP3+), which inhibit the function of the Teff cells that have infiltrated the disease site. It has been postulated that when the balance of homing of Treg and Teff cells shifts toward the former, there is a state of local immunosuppression leading to disease dissemination4, 56, 57.

Observations regarding the cellular characteristics of BAL fluid in patients with miliary TB have yielded conflicting results5860. Though the diagnostic significance of these findings is not clear, these may facilitate the understanding of the pathogenesis of miliary TB. The proportion and absolute number of lymphocytes are substantially increased in BAL fluid. A raised CD4+/CD8+ T-lymphocyte ratio and B-lymphocytes as well as a decrease in CD4+/CD8+ T-lymphocyte ratio have earlier been reported in BAL fluid61, 62. Polyclonal hypergammaglobulinaemia with increase in immunoglobulin (Ig) G, IgA, and IgM was observed in peripheral blood and BAL fluid61. These findings probably result from increased local synthesis by activated B-lymphocytes. Increased BAL fluid fibronectin and serum C3 levels reflect an acute phase response to ongoing inflammation61, 62. Lymphocytic alveolitis and increased IgG and IgA levels have persisted following antituberculosis treatment61.

Molecular basis of dissemination

Several molecular mechanisms have been implicated in the development of miliary TB. These include impaired expansion of γ/δ T-cells63, failure to generate adequate cell-mediated immunity64, presence of HLA-Bw1565, HLA-DRB1*15/16, DRB1*13, and DQB1*060266, absence of HLA-Cw6, HLA-DRB1*10, and DQB1*050166, impaired MHC class II restricted target cell lysis, and over-exuberant lysis of target cell macrophages67 and LTA+368 G/A polymorphisms68.

Clinical manifestations

The clinical manifestations of miliary TB in adults are protean, non-specific and can be obscure till late in the disease (Fig. 2).

Constitutional symptoms: Patients with miliary TB classically present with fever with evening rise of temperature of several weeks duration, anorexia, weight loss, weakness and cough3, 4. Occurrence of daily morning temperature spikes69 is reported to be characteristic of miliary TB. However, fever may be absent and the patients may present with progressive wasting strongly mimicking a metastatic carcinoma (cryptic miliary TB)70. Since its initial description, cryptic miliary TB is increasingly being reported in the elderly population20, 21.

Chills and rigors, described in patients with malaria, or, sepsis and bacteraemia, have often been described in adult patients with miliary TB3, 4. Night sweats are common. A “damp shadow” sign (where sweat engraved the patient's silhouette on the bed, closely resembling a body's shadow) has also been described in miliary TB71.

Systemic involvement: Since miliary TB can involve many organs, patients present with symptoms and signs referred to various organ systems (Fig. 2). Dry cough and dyspnoea are often present. Sputum may be scanty. Haemoptysis can occur rarely. Cutaneous lesions may offer a valuable clue to the diagnosis of miliary TB (Fig. 3). These include erythematous macules and papules (tuberculosis miliaria cutis)4.

Choroidal tubercles when present in an appropriate clinical setting, provide a valuable clue to the diagnosis of miliary TB. The presence of choroidal tubercles is considered to be pathognomonic of miliary TB3, 4, 39. Choroidal tubercles are bilateral, pale, gray-white or yellowish lesions usually less than one quarter of the size of the optic disc and are located within 2 cm of the optic nerve. These are more commonly seen in children. Therefore, a systematic ophthalmoscopic examination is recommended after mydriatric administration in all patients with suspected miliary TB (Fig. 4).

TB meningitis (TBM) has been described in 10 to 30 per cent adult patients with miliary TB9, 18, 2227, 29, 30, 3239, 41, 42; conversely, about one-third of patients presenting with TB meningitis have underlying miliary TB72. In a recently published study73, the spectrum of neurological involvement in adult patients with miliary TB included TB meningitis with and without tuberculoma; and thoracic transverse myelopathy.

Before the advent of modern imaging modalities, such as CT, MRI and echocardiography, clinically evident cardiac or renal involvement was seldom documented in patients with miliary TB. Overt adrenal insufficiency manifesting as Addison's disease at initial presentation, or during anti-tuberculosis treatment has also been described in miliary TB74, 75.

Children

There are only a few published series on childhood miliary TB68, 2238. Miliary TB develops less often in children who have received the BCG vaccination4. Compared with adults, chills and night sweats, haemoptysis, productive cough are less common; peripheral lymphadenopathy and hepatosplenomegaly are more frequent in children with miliary TB. A larger proportion of children with miliary TB (20-40%) suffer from TBM68, 2238 compared to adults (15-30%)9, 18, 2227, 29, 3134, 3642, 44.

Miliary tuberculosis in immunosuppressed individuals

The prevalence of miliary TB in persons with early HIV infection (CD4+ cell counts >200 cells/mm3) is similar to that observed in immunocompetent individuals. With progression of immunosuppression, in late, advanced stage of HIV infection (CD4+ cell counts <200 cells/mm3), miliary TB is seen more often4, 58, 76. Table III shows a comparison of various aspects of miliary TB in late advanced stage of HIV infection and in immunocompetent individuals, early HIV infection4, 41, 58, 7682. Cutaneous involvement, a rare clinical manifestation in HIV-seronegative patients with miliary TB, is more commonly seen in late HIV infection with severe immunosuppression4, 58, 7682. The skin manifestations include tiny papules or vesiculopapules, (tuberculosis cutis miliaris disseminata, tuberculosis cutis acuta generalisita), and disseminated tuberculosis of the skin (Fig. 3). Sometimes, macular, pustular, or purpuric lesions, indurated ulcerating plaques, and subcutaneous abscesses have been reported83.

In miliary TB patients co-infected with HIV, especially in those with profound immunosuppression, intrathoracic lymphadenopathy and tuberculin anergy are more common; sputum smears are seldom positive and blood culture may grow M. tuberculosis4, 58, 7682 (Table III). These observations seem to be applicable to other causes of immunosuppression as well84.

Uncommon clinical manifestations and complications

Several uncommon clinical manifestations and complications have been observed in patients with miliary TB (Table IV). In some patients, complications like ARDS or myocarditis may in fact be the initial presentation. Atypical clinical presentation often delays the diagnosis and treatment and miliary TB is often a “missed diagnosis”.

Acute respiratory distress syndrome

Although ARDS may develop anytime during the course of miliary TB, it is usually seen at the time of initial presentation (Fig. 5); ARDS may develop as a component of the multiorgan dysfunction syndrome (MODS) due to TB or as a manifestation of immune reconstitution inflammatory syndrome (IRIS)8589. In a study from two large teaching hospitals at New Delhi and Tirupati in India89, among patients with TB, prolonged illness, miliary TB, absolute lymphocytopaenia and elevated alanine aminotransferase (ALT) were found to be independently associated with the development of ARDS. In another study90 from Korea, higher C-reactive protein levels and an increasing nutritional risk score were found to be independent risk factors for the development of ARDS in patients with miliary TB.

Air-leak syndromes

Pneumothorax, which may sometimes be bilateral, may be the presenting feature or may sometimes develop while the patient is receiving anti-tuberculosis treatment3, 4, 91, 92. Classical miliary shadows may not be discernible initially and may become apparent once lung expands. Intrapulmonary rupture of alveoli and consequent air-leak that traverses into the mediastinum after spreading along the vascular sheath can result in pneumomediastinum with subcutaneous emphysema which may be fatal93. Rarely, pneumothorax may develop as a complication in TB-ARDS patients receiving mechanical ventilation (Fig. 5E).

Acute kidney injury

In addition to being a part of MODS, acute kidney injury (AKI) may occur due to direct renal parenchymal involvement in patients with miliary TB4, 94. In HIV co-infected patients with miliary TB, AKI can also develop as a manifestation of IRIS95. Uncommonly, renal failure can develop as a consequence of obstructive uropathy caused by the disease process58.

Hepatic and gastrointestinal manifestations

Fulminant hepatic failure may rarely be the presenting manifestation in miliary TB. In some of these patients the characteristic pulmonary lesions that constitute the hall mark of miliary TB are absent96, 97. This could probably be the result of extrapulmonary focus discharging the tubercle bacilli into the portal circulation, resulting in hepatic miliary TB. Peritoneal involvement may be evident by the presence of ascites. Some patients may manifest diarrhoea or altered bowel habit suggestive of intestinal involvement. Small intestinal perforations at the site of granulomatous involvement have been described in some patients while on treatment98.

Lesions located elsewhere in the body

Thoracic and abdominal lymphadenopathy: Patients with miliary TB, especially those co-infected with HIV manifest associated intrathoracic lymphadenopathy. Sometimes, intra-abdominal lymphadenopathy involving portahepatis, pre- and para-aortic and mesenteric lymph nodes; retroperitoneal lymphadenopathy may be present.

Pott's spine: Pott's spine with or without myelopathy may also be present in patients with miliary TB.

Cold abscesses: Cold abscesses in association with peripheral lymphadenopathy in the cervical or axillary regions, Pott's spine with paraspinal cold abscess may also be evident in patients with miliary TB.

Genitourinary lesions: Women with miliary TB can manifest pelvic ascites, tubo-ovarian masses, pyosalpinx and should be carefully evaluated for the same.

Cardiovascular manifestations

In patients with miliary TB, life-threatening complications such as myocarditis99, congestive heart failure99, native100102 and prosthetic valve103 endocarditis, pericarditis, intracardiac mass99, mycotic aneurysm104, infection of a pacemaker pulse-generator pocket105, infection of ventriculoatrial shunt causing miliary TB106 and sudden cardiac death107109 have been described.

Immune reconstitution inflammatory syndrome (IRIS)

The IRIS, occasionally described in HIV-negative individuals with TB, has been reported to occur in about one-third of patients co-infected with HIV and TB within days to weeks of the initiation of highly active antiretroviral therapy (HAART)110, 111. The IRIS can be brief or prolonged with multiple recurrences. Manifestations of IRIS range from isolated instances of fever to increased or initial appearance of lymphadenopathy, new or worsening pulmonary infiltrates, serositis, cutaneous lesions, and new or expanding central nervous system mass lesions76, 110, 111 ; AKI95, 112 or ARDS85 can develop during the course of IRIS.

Differential diagnosis

Radiologically, the miliary pattern has been defined as “a collection of tiny discrete pulmonary opacities that are generally uniform in size and widespread in distribution, each of which measures 2 mm or less in diameter”113. Many conditions can present with a miliary pattern on the chest radiograph or CT (Fig. 6) and are listed in Table V. These conditions must be differentiated from miliary TB by detailed diagnostic work-up.

Diagnosis

The diagnosis of miliary TB can be difficult as the clinical manifestations are non-specific, the chest radiographs do not always reveal the classical miliary changes and patients may present with complications thus distracting the clinicians. Therefore, a high index of clinical suspicion and a systematic approach to diagnostic testing is required to establish the diagnosis of miliary TB.

Following criteria are useful for the diagnosis of miliary TB: (i) clinical presentation consistent with a diagnosis of tuberculosis such as, pyrexia with evening rise of temperature, weight loss, anorexia, tachycardia and night sweats of greater than six weeks duration responding to antituberculosis treatment; (ii) classical miliary pattern on chest radiograph; (iii) bilateral diffuse reticulonodular lung lesions on a background of miliary shadows demonstrable either on plain chest radiograph or HRCT; and (iv) microbiological and/or histopathological evidence of TB39. The diagnostic approach to a patient with suspected miliary TB is shown in Fig. 7.

Tuberculin skin test

Tuberculin anergy is more common in miliary TB than in pulmonary and ep0 TB; tuberculin skin test

(TST) conversion may occur following successful treatment. In various published paediatric68, 22, 38 and adult series2427, 31, 3234, 36, 37, 114 tuberculin anergy has ranged from 35 to 74 per cent and 20 to 70 per cent, respectively. However, a positive TST only indicates infection with M. tuberculosis and does not always indicate active disease. A positive reaction with necrosis often (but not always) indicates active disease.

Interferon-gamma release assays

Newer in vitro T-cell based interferon-gamma release assays (IGRAs) available in the enzyme linked immunosorbent assay (ELISA) and enzyme linked immunospot (ELISPOT) formats appear to be promising in detecting latent TB infection (LTBI) and have several advantages over the TST. These tests may be particularly useful in children, BCG vaccinated individuals and in HIV infection and AIDS115, 116. As with TST, a positive IGRA test result, however, does not distinguish between LTBI and active disease, but a negative IGRA result may be helpful in ruling-out a diagnosis of TB116. These tests are costly and on the basis of available evidence their routine use is not indicated.

Haematological and biochemical abnormalities

A number of haematological and biochemical abnormalities are known to occur in miliary TB (Table VI)69, 18, 22, 23, 2427, 29, 31, 323642, 44 but their significance is controversial. Disseminated intravascular coagulation (DIC)86, 89 has been described in patients with miliary TB in the setting of ARDS and MODS and is associated with a high mortality. Immune mechanisms have been implicated to cause bone marrow suppression and miliary TB has also been implicated as a cause of pancytopenia, hypoplastic anaemia4, 117. Hypercalcaemia has been documented in miliary TB, but is uncommon118.

Hyponatraemia in miliary TB can occur due to an acquired disturbance of neurohypophyseal function resulting in unregulated antidiuretic hormone (ADH) release; an antidiuretic principle in the lung tissue affected by TB that may either produce ADH or absorb an inappropriately released hormone from the posterior pituitary119121. Hyponatraemia may indicate the presence of TB meningitis34 and may also be a predictor of mortality39 in patients with miliary TB. Rifampicin-induced adrenal crisis in a patient with miliary TB and Addison's disease who developed generalized malaise and hyponatraemia while initiated on antituberculosis treatment has also been described75.

Imaging studies

Miliary pattern on the chest radiograph is often the first clue suggestive of miliary TB. Several other imaging modalities, such as, ultrasonography, CT, MRI, positron emission tomography (PET) help to assess the extent of organ involvement and are also useful in evaluating response to treatment (Figs. 8 and 9).

Chest radiograph: The chest radiographic abnormalities in miliary TB are depicted in Table VII, 4, 114. Miliary pattern on chest radiograph3, 4, 113 is the hall mark of miliary TB and is evident in a majority of patients . Classically, subtle miliary lesions are best delineated in slightly underpenetrated films especially when the diamond shaped areas of the lung in between the ribs are carefully scrutinized using bright light122, 123. However, in 10 per cent of the cases, the nodules may be greater than 3 mm in diameter124. Before the advent of CT, it was observed that classical miliary pattern would not be evident in the chest radiograph in up to 50 per cent of the patients and would be detected only at the time of autopsy14, 17, 18, 24, 34, 124.

When caseous material, collagen or both are present in the tubercles, these became visible on the chest radiograph122. Classical miliary pattern on the chest radiograph represents summation of densities of the tubercles that are perfectly aligned and imperfectly aligned tubercles result in curvilinear densities and a reticulonodular pattern125. Rarely, lymphatic obstruction or infiltration can result in ground glass appearance126. In some patients, predominance of lesions on one side may be evident (Fig. 10). Some patients may have normal chest radiographs initially and the typical miliary pattern may evolve over the course of disease. This is particularly evident in ARDS due to miliary TB where the chest radiograph findings may be identical to that seen in ARDS due to other causes86, 89. One of the patients seen by the authors39 had undergone tonsillectomy and the histopathological diagnosis was reported as miliary TB. On further diagnostic testing, a repeat chest radiograph revealed classical miliary pattern that was not discernible in the earlier chest radiographs, thus, emphasizing the importance of periodic repeat chest radiographic examination in patients with suspected miliary TB4, 39.

Ultrasonography: Ultrasonography helps in detecting ascites which may sometimes be loculated, focal hepatic and splenic lesions and cold abscesses, intra-abdominal lymphadenopathy, involvement of other abdominal organs and pleural effusion(s). Ultrasonography guidance also facilitates diagnostic thoracic or abdominal paracentesis to procure pleural or peritoneal fluid for diagnostic testing especially if the fluid is loculated.

Computed tomography(CT) and magnetic resonance imaging (MRI): In comparison with pre-CT era, high resolution CT (HRCT), thin-section multidetector row CT (MDCT) have facilitated the antemortem diagnosis of miliary TB. With the availability of these imaging modalities, cryptic miliary TB, that could previously be diagnosed only at autopsy, can now be diagnosed antemortem4, 40.

The HRCT reveals a mixture of both sharply and poorly defined, less than 2 mm nodules that are widely disseminated throughout the lungs associated with diffuse reticulation127, 128. Importantly, the HRCT may reveal classical miliary pattern even when the chest radiograph looks apparently normal4, 39 and also facilitates identification of additional findings such as intrathoracic lymphadenopathy, calcification, pleural and pericardial lesions (Fig. 8D)129.

Air trapping has been described on HRCT both at presentation and during follow up period128. The clinical significance of these findings is unclear. Rupture of these areas of air trapping may perhaps be responsible for the development of air-leak syndromes in miliary TB. The interlobular septal thickening or intralobular fine networking seen on HRCT in miliary TB seems to be caused by the caseation necrosis in the alveolar walls and interlobular septa. Sometimes, in subjects with active post-primary disease, centrilobular nodules and branching linear structures giving a “tree-in-bud appearance” may be evident127, 128. A higher prevalence of interlobular septal thickening, necrotic lymph nodes and extrathoracic involvement has been observed in HIV-seropositive patients with miliary TB80.

CT and MRI have been useful in identifying miliary lesions at extra-pulmonary sites. Abdominal CT has been useful in identifying lesions in the liver, spleen, intestine, mesentery, peritoneum, adrenals and lymph nodes, and also detects cold abscesses4. Unlike the CT of the chest where the classical less than 2 mm nodular lesions are evident, miliary lesions in the liver and spleen may appear as discrete hypodense lesions (Fig. 8E) a few of which may be confluent, sometimes with irregular peripheral rim enhancement130.

The MRI of brain and spine is very useful in the evaluation of patients with miliary TB and TBM, and spinal TB. The MRI is particularly helpful in identification and delineating the extent of tuberculomas and cold abscesses and monitoring the response to treatment4.

Pelvic evaluation with all imaging modalities should be routinely done in all female patients for defining the extent of involvement. Tubo-ovarian masses, hydro- and pyosalpinx, fluid collection in the pouch of Douglas may become obvious. Image guided radiological procedures such as fine needle aspiration for cytological examination (FNAC) and biopsy under CT or MRI guidance are useful for procuring tissue/body fluids for diagnostic testing.

Sputum examination

Though not all patients with miliary TB manifest productive cough, when available, sputum must be subjected to smear and mycobacterial culture examination. Sputum smear microscopy using Ziehl-Neelsen stain is useful in detecting acid-fast bacilli (AFB). Fluorescent staining may also facilitate rapid diagnosis. Sputum mycobacterial culture and drug susceptibility testing carried out in an accredited laboratory with external quality assurance can facilitate identification and appropriate management of drug-resistant TB.

Bronchoscopy

Fibreoptic bronchoscopy, BAL, bronchoscopic aspirate, brushings, washings, and transbronchial lung biopsy (TBLB) are useful in confirming the diagnosis of miliary TB. The cumulative diagnostic yield for various bronchoscopic specimens by smear and culture methods in published studies has been found to be 46.8 per cent23, 31, 32, 37, 39, 131. In patients with dry cough BAL fluid obtained through fiberoptic bronchoscopy should be submitted for mycobacterial smear, culture and molecular methods (if facilities exist).

Laparascopy

Laparascopy provides an opportunity to visualise the lesions, facilitates biopsy from the liver, spleen, peritoneum, omentum, mesenteric lymph nodes for diagnostic confirmation132. When associated abdominal involvement is present, laparascopy should be considered for procuring tissue for diagnostic testing.

Body fluids and tissue examination

In patients with suspected miliary TB, depending on the extent of organ system involvement, appropriate tissue and body fluid samples must be obtained to confirm histopathological microbiological diagnosis. Elevated serum alkaline phosphatase levels indicate diffuse liver involvement; needle biopsy of the liver can be useful in confirming the diagnosis. Bone marrow aspiration and needle biopsy have also been found to be useful for the diagnosis of miliary TB. Pleural fluid, pericardial fluid, ascitic fluid, CSF, urine, bronchoscopic secretions, blood and tissue biopsy specimens have all been employed to confirm the diagnosis of disseminated and miliary TB. The diagnostic yield of various tissue and body fluid specimens has been variable69, 18, 2227, 29, 3134, 3641, 42, 44 (Fig. 11).

When imaging studies reveal focal lesions in organs (e.g., liver, spleen prostate), intrathoracic or intra-abdominal lymphadenopathy or cold abscess, image-guided FNAC or tru-cut biopsy can be carried out and subjected to histopathological and microbiological evaluation to confirm the aetiological diagnosis.

Mycobacterial culture and drug-susceptibility testing (DST)

Mycobacterial culture and drug susceptibility testing of sputum, body fluids and tissue specimens carried out in an accredited laboratory with external quality assurance can facilitate identification and appropriate management of drug-resistant TB. Rapid culture methods such as the BACTEC-460 radiometric method, mycobacterial growth indicator tube (MGIT), and molecular methods may be useful for rapid drug-susceptibility testing4.

Serodiagnostic methods

The recently published World Health Organization (WHO) policy statement on the use of serodiagnostic tests strongly recommends that the currently available commercial serodiagnostic tests should not be used for the diagnosis of active pulmonary and extra-pulmonary TB disease including miliary TB133.

Adenosine deaminase

Adenosine deaminase (ADA) and interferon-gamma level estimation in ascitic fluid, pleural fluid can be helpful in the diagnosis of miliary TB134139. A recent study139 has shown that that CSF-ADA is a more sensitive indicator than PCR for the diagnosis in patients with TB meningitis. However, another recent systematic review and meta-analysis140 has shown that CSF-ADA cannot distinguish between TB meningitis and bacterial meningitis. Since ADA estimation is a cheap, cost-effective test, utility of CSF-ADA estimation in the diagnosis of TB meningitis merits further study.

Molecular methods

Polymerase chain reaction (PCR) of CSF, tissue biopsy specimens and blood (especially in HIV-infected patients), may be useful for confirmation of diagnosis58. The PCR has been found to be most useful when applied to clean specimens such as CSF where its sensitivity and specificity have been reported to be 0.5 to 0.9 and 1.0, respectively71.

In patients with suspected miliary TB, wherever possible, automated molecular tests for M. tuberculosis detection and drug-resistance testing may be used for early confirmation of diagnosis. Based on currently available evidence and expert opinion, molecular assays to detect gene mutations that signal drug resistance have been endorsed by the WHO as being most suited for rapid diagnosis141. The GeneXpert MTB/RIF assay (Cepheid, Sunnyvale, CA) that uses heminested real-time PCR assay to amplify M. tuberculosis -specific sequence of the rpoB gene which is then probed with molecular beacons for mutations within the rifampicin-resistance determining region can facilitate rapid diagnosis from clinical specimens, such as, sputum in about 2 h142, 143. Line probe assays (LPAs), such as, the INNO-LiPA® Rif. TB kit (Innogenetics NV, Gent, Belgium) and the GenoType® MTBDRplus assay (Hain Lifescience GmbH, Nehren, Germany) have been found to be useful for rapid screening of patients at risk for multidrug-resistant TB (MDR-TB)144.

Positron emission tomography

Positron emission tomography CT (PET-CT) using the radiopharmaceutical 18F labelled 2-deoxy-D-glucose (FDG) is useful to assess activity of various infectious lesions including TB (Fig. 9)145, 146. The PET-CT is ideally suited to define the extent of disease at the time of initial presentation. The utility of PET-CT in assessing the activity of lesions that might persist following antituberculosis treatment in miliary TB also merits further study.

Pulmonary function, gas exchange abnormalities and cardiopulmonary exercise testing

Miliary TB is associated with abnormalities of pulmonary function typical of interstitial lung disease. Impairment of diffusion is the most common abnormality and may sometimes be severe59, 147. Other abnormalities include, a mild reduction in flow rates suggestive of peripheral airways involvement59. During the acute stage, arterial hypoxaemia due to widening of the alveolar-arterial oxygen gradient and hypocapnia due to tachypnoea are also observed148. Often, the pulmonary function and gas exchange abnormalities may be of a greater magnitude than might be expected from the chest radiograph61, 148150.

Abnormal cardiopulmonary exercise performance has been described in patients with miliary TB. The salient abnormalities included lower maximum oxygen consumption, maximal work rate, anaerobic threshold, peak minute ventilation, breathing reserve, and low maximal heart rate4, 114, 148, 150. Other abnormalities included higher respiratory frequency, peak minute ventilation at submaximal work, and high physiological dead space/tidal volume. A demonstrable fall in oxygen saturation (to 4% or more) with exercise was observed. Following successful anti-tuberculosis treatment, these abnormalities reversed in a majority of the patients148, 150.

Treatment

Patients with miliary TB must be promptly treated with standard anti-tuberculosis treatment as the disease is uniformly fatal if not treated3, 4. However, there is no consensus regarding the optimum duration of treatment. There are no published randomized controlled trials assessing the efficacy of the standard WHO treatment regimens that have been widely used in national tuberculosis control programmes worldwide151.

The American Thoracic Society (ATS), the Centers for Disease Control and Prevention (CDC), the Infectious Disease Society of America (IDSA)152 and National Institute for Health and Clinical Excellence (NICE)153 guidelines from UK state that six months of treatment (2-month intensive phase with isoniazid, rifampicin, pyrazinamide, and ethambutol or streptomycin, followed by a 4-month continuation phase with isoniazid and rifampicin) , whereas the American Academy of Pediatrics (AAP)154 advocates nine months of treatment for newly diagnosed cases of miliary TB without meningeal involvement. When TB meningitis is present, it is suggested that the treatment be extended for 12 months136138. In several parts of the world, patients with miliary TB get treated under national TB control programmes, with DOTS using short-course intermittent, thrice-weekly treatment151.

In the WHO guidelines for the treatment of TB155, patients are categorized as “new patients” or “previously treated patients”. In these guidelines, miliary TB is classified as pulmonary TB because there are lesions in the lungs. New patients with miliary TB receive 6 months of daily or intermittent treatment as described above. The guidelines mention that some experts recommend 9 to 12 months of treatment when TB meningitis is present given the serious risk of disability and mortality; and 9 months of treatment when bone and joint TB is also present.

For previously treated patients, the guidelines advocate that specimens for culture and DST should be obtained at or before the start of treatment. The DST should be performed for at least isoniazid and rifampicin and in settings where rapid molecular-based DST results are available, the results should guide the choice of regimen.

These observations highlight the importance of accurately assessing the extent of involvement clinically and radiologically. Thus, if underlying TB meningitis remains undiagnosed in a patient with miliary TB, such a patient has a risk of receiving anti-tuberculosis treatment only for 6 months which may be sub-optimal. Therefore, though the standard duration of treatment may be sufficient for many, each patient needs to be assessed individually, and wherever indicated, treatment duration may have to be extended.

Other issues such as quality of anti-tuberculosis drugs and their bio-availability are important in resource-poor nations. Especially in HIV-seropositive patients, consideration must also be given to inadequate plasma levels of anti-tuberculosis drugs in spite of regular intake in adequate dosage due to malabsorption problem.

Monitoring for adverse drug reactions

Patients with miliary TB receiving anti-tuberculosis treatment should be carefully monitored for adverse drug reactions, especially, anti-tuberculosis drug-induced hepatotoxicity (DIH). Asymptomatic rise in hepatic transaminases is common in patients with miliary TB and unless definitive evidence of DIH is present156159, anti-tuberculosis treatment should not be withheld on this evidence alone. In this scenario, liver functions should be periodically monitored. In tropical countries, acute viral hepatitis must be ruled out in patients who develop antituberculosis DIH160, 161.

When patients with miliary TB develop anti-tuberculosis DIH, the potentially hepatotoxic drugs (rifampicin, isoniazid and pyrazinamide) should be stopped158. These patients should be treated with non-hepatotoxic anti-tuberculosis drugs, such as ethambutol, streptomycin and a fluoroquinolone, till the liver functions normalize. In patients who have developed anti-tuberculosis DIH, it is usually possible to reintroduce the same hepatotoxic drugs that have been implicated in the causation of DIH once the liver functions normalize. However, till recently, there has been a lack of consensus regarding the optimal sequence and dosage schedule for reintroduction. A recently published prospective randomized controlled study162, provides useful data on this topic. In this study from India, 175 patients with a diagnosis of antituberculosis DIH were randomized to receive one of three different pre-defined reintroduction regimens of anti-tuberculosis drugs and were evaluated prospectively. The recurrence rate of DIH was not significantly different between the groups receiving isoniazid, rifampicin, and pyrazinamide administered simultaneously at full dosage from day 1; and the groups receiving reintroduction regimens based on the ATS158 and British Thoracic Society guidelines163. Further studies are required to clarify the issue.

Corticosteroids

Only limited published data are available specifically evaluating the role of adjunct corticosteroid treatment in patients with miliary TB and the results have been conflicting. While a beneficial response was observed in some studies164, such a benefit could not be observed in others165. Associated adrenal insufficiency is an absolute indication for the administration of adjunctive corticosteroid treatment. However, in patients with miliary TB, adjunctive corticosteroid treatment is considered to be beneficial with TB meningitis, large pericardial effusion, IRIS, ARDS, immune complex nephritis, and histiocyticphagocytosis syndrome4, 85, 166.

Antiretroviral drugs

The efficacy of standard anti-tuberculosis treatment regimens in the treatment of HIV, miliary TB co-infection has not been studied in detail in the field setting under programme conditions. Treatment of miliary TB in patients co-infected with HIV requires careful consideration of drug-drug interactions between anti-tuberculois and anti-retroviral drugs167, 168. Co-administration of rifampicin, by inducing the hepatic cytochrome P450 pathway, may result in dangerously low levels of anti-retroviral agents. Rifabutin is preferred over rifampicin especially when protease inhibitors are used but is costly. Efavirenz is preferred over nevirapine but should be avoided during pregnancy. Pregnancy test needs to be done while female patients are on efavirenz. A close monitoring of laboratory parameters is required to detect drug-drug interaction when patients are receiving both treatments. Recently, there has been a change in the WHO revised recommendations167 based on Grading of Recommendations Assessment, Development and Evaluation (GRADE) system169 regarding the time of starting anti-retroviral drugs, the choice of drugs and the time of initiation in relation to institution of anti-tuberculosis treatment. The algorithm for treatment and monitoring of patients with miliary TB is shown in Figs. 12A and B.

In peripheral hospitals in endemic areas where HIV and TB are common, quality assured laboratory facilities for HIV ELISA, CD4+ T-lymphocyte counts and plasma HIV viral load estimation may not be available. Timing of initiation and antiretroviral treatment (ART), choice of ART and antituberculosis treatment regimens, drug-drug interactions, all require careful consideration. A high degree of suspicion and appropriate training of the staff is required to identify IRIS, recognize adverse drug reactions and drug toxicities, drug adherence issues.

Mechanical ventilation

Intensive care, assisted mechanical ventilation and other interventions may be required for the management of patients with miliary TB-ARDS86, 89. Patients with miliary TB receiving assisted mechanical ventilation should be carefully watched for complications such as pneumothorax (Fig. 5F)

Interventional radiology

Image-guided pigtail catheter drainage for draining psoas abscess, coil or gel foam embolization for treating haemoptysis, among others are useful adjuncts for the management of complications in patients with miliary TB.

Surgery

Surgery is often required to procure specimens for diagnostic testing and to ameliorate complications, such as small bowel perforation where it may be lifesaving. Surgery may be indicated when patients fail to respond to chemotherapy with evidence of ongoing infection and for relief of spinal cord compression with persistence or recurrence of neurological deficits, or instability of the spine.

Mortality

The mortality related to miliary TB is about 15 to 20 per cent in children and is slightly higher in adults (25 to 30%)2427, 3134, 36, 37. Delay in diagnosis and consequently, delayed initiation of specific anti-tuberculosis treatment appears to be the most important factor responsible for mortality in miliary TB.

Prognostic factors

Several factors have been identified as predictors of poor outcome in patients with miliary TB (Table VIII). In patients with miliary TB-ARDS89, acute physiological and chronic health evaluation (APACHE II) score >18; APACHE II score ≤18 in the presence of hyponatraemia and arterial oxygen tension to fraction of inspired oxygen (PaO2/FIO2) ratio ≤108.5 have been identified to be predictors of death. Identification of these factors can alert the clinicians managing patients with miliary TB.

Prevention

The BCG vaccination is effective in reducing the incidence of miliary TB, especially in children170. However, it is not effective in individuals who have latent TB infection and should not be administered to immunosuppressed hosts, such as, HIV infected infants. Targeted tuberculin testing is practised in countries with low prevalence of TB such as the USA152, 171, but anti-TB drug-induced hepatotoxicity is a potential risk with this intervention. Ongoing research172, 173 is likely to provide a more effective vaccine than BCG.

Lessons learnt

Miliary TB remains an elusive diagnosis even in areas where TB is highly endemic. The key practical issues in the diagnosis and management of miliary TB are listed in Table IX. As the clinical symptomatology and physical signs are non-specific, clinicians should have a low threshold for suspecting miliary TB. Careful physical examination for diagnostic clues such as peripheral lymphadenopathy, cold abscess, pleural effusion, ascites, among others will help in procuring tissue and body fluids for confirming the diagnosis. Fundus examination for detecting choroid tubercles must be done in all patients with suspected miliary TB as their presence is pathognomonic of miliary TB. Specific efforts should also be directed at documenting the presence of TB meningitis as this has therapeutic significance.

Imaging modalities such as CT and MRI are useful to establish the miliary pattern. In conjunction with ultrasonography, CT, MRI and PET can help in establishing the extent of organ system involvement in miliary TB. Image guided FNAC or biopsy from various organ sites, needle biopsy of the liver, bone marrow aspiration and biopsy, sputum smear and culture examination, including drug-susceptibility testing (if access to an accredited laboratory is available) must be carried out in all patients.

Treatment of miliary TB should be started at the earliest as per the standard WHO guidelines. Adjunct corticosteroid treatment is helpful when there is adrenal insufficiency, with TB meningitis, large pericardial or pleural effusion, dyspnoea and/or disabling chest pain, IRIS, ARDS, immune complex nephritis, and histiocyticphagocytosis syndrome. In patients co-infected with HIV, careful consideration must be given for drug-drug interactions between anti-tuberculosis and anti-retroviral drugs. Patients receiving anti-tuberculosis drugs must be carefully monitored for adverse drug reactions, especially DIH and other complications of miliary TB. In new patients with miliary TB without TB meningitis, nine months of anti-tuberculosis treatment should be adequate. When TB meningitis is present, 12 months of antituberculosis treatment may be required. However, the duration of treatment may have to be prolonged based on individual requirements.

In light of the continuing HIV/AIDS epidemic and increasing use of immunosuppressive and cytotoxic drugs, the burden of miliary TB will continue to rise. The utility of newer diagnostic methods such as IGRAs needs to be clarified. Even though clinical trials of a few new anti-tuberculosis drugs are ongoing, no other new anti-tuberculosis drugs appear to be on the threshold of being introduced into practice. Therefore, judicious use of available drugs to ensure regular, complete and adequate treatment is imperative. The role of adjunctive corticosteroid therapy needs to be elucidated in future studies. The scope and utility of PET-CT in assessing the activity of lesions that might persist following anti-tuberculosis treatment in miliary TB needs to be studied further. The quest for a better vaccine than BCG is still on and more data on the candidate vaccines that are currently being evaluated is likely to emerge.


References
1. Manget JJ. Sepulchretum sive anatomica practicaYear: 17001LondonCramer and Perachon Observatio XLVII (3 vols).
2. Sahn SA,Neff TA. Miliary tuberculosisAm J MedYear: 1974564945054206484
3. Sharma SK,Mohan A. Schlossberg DMiliary tuberculosisTuberculosis and nontuberculous mycobacterial infectionsYear: 20116th edWashingtonAmerican Society for Microbiology Press41535
4. Sharma SK,Mohan A,Sharma A,Mitra DK. Miliary tuberculosis: new insights into an old diseaseLancet Infect DisYear: 200554153015978528
5. Alvarez S,McCabe WR. Extrapulmonary tuberculosis revisited: a review of experience at Boston City and other hospitalsMedicine (Baltimore)Year: 19846325556419006
6. Gurkan F,Bosnak M,Dikici B,Bosnak V,Yaramis A,Tas MA,et al. Miliary tuberculosis in children: a clinical reviewScand J Infect DisYear: 199830359629817515
7. Hussey G,Chisholm T,Kibel M. Miliary tuberculosis in children: a review of 94 casesPediatr Infect Dis JYear: 19911083261749696
8. Kim PK,Lee JS,Yun DJ. Clinical review of miliary tuberculosis in Korean children.84 cases and review of the literatureYonsei Med JYear: 196910146525402558
9. Long R,O’Connor R,Palayew M,Hershfield E,Manfreda J. Disseminated tuberculosis with and without a miliary pattern on chest radiograph: a clinical-pathologic-radiologic correlationInt J Tuberc Lung DisYear: 199715289441059
10. Alsoub H,Al Alousi FS. Miliary tuberculosis in Qatar: a review of 32 adult casesAnn Saudi MedYear: 200121162017264582
11. Somu N,Vijayasekaran D,Ravikumar T,Balachandran A,Subramanyam L,Chandrabhushanam A. Tuberculous disease in a pediatric referral centre: 16 years experienceIndian PediatrYear: 199431124597875786
12. Udani PM,Bhat US,Bhave SK,Ezuthachan SG,Shetty VV. Problem of tuberculosis in children in India: epidemiology, morbidity, mortality and control programmeIndian PediatrYear: 197613881901088281
13. Ansari NA,Kombe AH,Kenyon TA,Hone NM,Tappero JW,Nyirenda ST,et al. Pathology and causes of death in a group of 128 predominantly HIV-positive patients in Botswana, 1997-1998Int J Tuberc Lung DisYear: 20026556311931402
14. Chapman CB,Whorton CM. Acute generalised miliary tuberculosis in adults.A clinicopathological study based on sixty three cases diagnosed at autopsyN Engl J MedYear: 19462352394820996257
15. Jacques J,Sloan TM. The changing pattern of miliary tuberculosisThoraxYear: 197025237405441995
16. Jagirdar J,Zagzag D. Rom WN,Garay SMPathology and insights into pathogenesis of tuberculosisTuberculosisYear: 2004PhiladelphiaLippincott Williams & Wilkins32344
17. Lewison M,Frelich EB,Ragins OB. Correlation of clinical diagnosis and pathological diagnosis with special reference to tuberculosis: analysis of autopsy findings in 893 casesAm Rev TubercYear: 19312415271
18. Slavin RE,Walsh TJ,Pollack AD. Late generalized tuberculosis: a clinical pathologic analysis and comparison of 100 cases in the preantibiotic and antibiotic erasMedicine (Baltimore)Year: 198059352667432152
19. Vasankari T,Liippo K,Tala E. Overt and cryptic miliary tuberculosis misdiagnosed until autopsyScand J Infect DisYear: 200335794614723351
20. Anonymous. Miliary tuberculosis: a changing patternLancetYear: 1970198564191941
21. Braun MM,Cote TR,Rabkin CS. Trends in death with tuberculosis during the AIDS eraJAMAYear: 1993269286588497090
22. Aderele WI. Miliary tuberculosis in Nigerian childrenEast Afr Med JYear: 19785516671679866
23. Al-Jahdali H,Al-Zahrani K,Amene P,Memish Z,Al-Shimemeri A,Moamary M,et al. Clinical aspects of miliary tuberculosis in Saudi adultsInt J Tuberc Lung DisYear: 20004252510751072
24. Biehl JP. Miliary tuberculosis; a review of sixty-eight adult patients admitted to a municipal general hospitalAm Rev TubercYear: 1958776052213521258
25. Campbell IG. Miliary tuberculosis in British ColumbiaCan Med Assoc JYear: 1973108151794197536
26. Gelb AF,Leffler C,Brewin A,Mascatello V,Lyons HA. Miliary tuberculosisAm Rev Respir DisYear: 19731081327334201630
27. Grieco MH,Chmel H. Acute disseminated tuberculosis as a diagnostic problem.A clinical study based on twenty-eight casesAm Rev Respir DisYear: 1974109554604823410
28. Jacob JT,Mehta AK,Leonard MK. Acute forms of tuberculosis in adultsAm J MedYear: 200912212719114163
29. Hussain SF,Irfan M,Abbasi M,Anwer SS,Davidson S,Haqqee R,et al. Clinical characteristics of 110 miliary tuberculosis patients from a low HIV prevalence countryInt J Tuberc Lung DisYear: 20048493915141744
30. Monie RD,Hunter AM,Rocchiccioli KM,White JP,Campbell IA,Kilpatrick GS. Retrospective survey of the management of miliary tuberculosis in South and West Wales, 1976-8ThoraxYear: 198338369726879486
31. Kim JH,Langston AA,Gallis HA. Miliary tuberculosis: epidemiology, clinical manifestations, diagnosis, and outcomeRev Infect DisYear: 199012583902385765
32. Maartens G,Willcox PA,Benatar SR. Miliary tuberculosis: rapid diagnosis, hematologic abnormalities, and outcome in 109 treated adultsAm J MedYear: 19908929162393033
33. Mert A,Bilir M,Tabak F,Ozaras R,Ozturk R,Senturk H,et al. Miliary tuberculosis: clinical manifestations, diagnosis and outcome in 38 adultsRespirologyYear: 200162172411555380
34. Munt PW. Miliary tuberculosis in the chemotherapy era: with a clinical review in 69 American adultsMedicine (Baltimore)Year: 197251139555013636
35. Noertjojo K,Tam CM,Chan SL,Chan-Yeung MM. Extrapulmonary and pulmonary tuberculosis in Hong KongInt J Tuberc Lung DisYear: 200268798612365574
36. Onadeko BO,Dickinson R,Sofowora EO. Miliary tuberculosis of the lung in Nigerian adultsEast Afr Med JYear: 19755239051164907
37. Prout S,Benatar SR. Disseminated tuberculosis.A study of 62 casesS Afr Med JYear: 198058835427444685
38. Rahajoe NN. Miliary tuberculosis in children.A clinical reviewPaediatr IndonesYear: 199030233402077467
39. Sharma SK,Mohan A,Pande JN,Prasad KL,Gupta AK,Khilnani GC. Clinical profile, laboratory characteristics and outcome in miliary tuberculosisQ J MedYear: 1995882937
40. Federele MPThe year book of diagnostic radiologyYear: 1997St. LouisMosby-Year Book, Inc913
41. Swaminathan S,Padmapriyadarsini C,Ponnuraja C,Sumathi CH,Rajasekaran S,Amerandran VA,et al. Miliary tuberculosis in human immunodeficiency virus infected patients not on antiretroviral therapy: clinical profile and response to short course chemotherapyJ Postgrad MedYear: 2007532283118097109
42. Teklu B,Butler J,Ostrow JH. Miliary tuberculosis. A review of 83 cases treated between 1950 and 1968Ethiop Med JYear: 1977153948590257
43. Udani PM,Bhat US,Bhave SK,Ezuthachan SG,Shetty VV. Problem of tuberculosis in children in India: epidemiology, morbidity, mortality and control programmeIndian PediatrYear: 197613881901088281
44. El Shamy AS,Al Saidi F,Baidas G,Al Bader M,Sawy M,Hakkim R. Miliary tuberculosis in Kuwait: clinical presentation, diagnosis and treatment outcomeKuwait Med JYear: 20084028892
45. Dixon WG,Hyrich KL,Watson KD,Lunt M,Galloway J,Ustianowski A,Symmons DP. BSR BR Control Centre Consortium, B.S.R. Biologics RegisterDrug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR)Ann Rheum DisYear: 2010695528
46. Malipeddi AS,Rajendran R,Kallarackal G. Disseminated tuberculosis after anti-TNF alpha treatmentLancetYear: 200736916217223480
47. Toussirot E,Streit G,Wendling D. Infectious complications with anti-TNF alpha therapy in rheumatic diseases: a reviewRecent Pat Inflamm Allergy Drug DiscovYear: 20071394719075965
48. Uthman I,Kanj N,El-Sayad J,Bizri AR. Miliary tuberculosis after infliximab therapy in LebanonClin RheumatolYear: 2004232798015168166
49. Anyanwu CH,Nassau E,Yacoub M. Miliary tuberculosis following homograft valve replacementThoraxYear: 1976311016816028
50. Morano Amado LE,Amador Barciela L,Rodriguez Fernandez A,Martinez-Sapina Llamas I,Vazquez Alvarez O,Fernandez Martin J. Extracorporeal shock wave lithotripsy complicated with miliary tuberculosisJ UrolYear: 1993149153248501805
51. Rabe J,Neff KW,Lehmann KJ,Mechtersheimer U,Georgi M. Miliary tuberculosis after intravesical bacille Calmette-Guerin immunotherapy for carcinoma of the bladderAJR Am J RoentgenolYear: 19991727485010063874
52. Silverblatt A,DeSimone JA,Babinchak TJ. Acute miliary tuberculosis following laser lithotripsyInfect MedYear: 200219802
53. Yekanath H,Gross PA,Vitenson JH. Miliary tuberculosis following ureteral catheterizationUrologyYear: 19801619787404920
54. Collins HL,Kaufmann SH. The many faces of host responses to tuberculosisImmunologyYear: 20011031911380686
55. Rook GA,Hernandez-Pando R,Dheda K,Teng Seah G. IL-4 in tuberculosis: implications for vaccine designTrends ImmunolYear: 200425483815324741
56. Sharma PK,Saha PK,Singh A,Sharma SK,Ghosh B,Mitra DK. FoxP3+ regulatory T cells suppress effector T-cell function at pathologic site in miliary tuberculosisAm J Respir Crit Care MedYear: 200917910617019246720
57. Sharma SK,Mitra DK,Balamurugan A,Pandey RM,Mehra NK. Cytokine polarization in miliary and pleural tuberculosisJ Clin ImmunolYear: 2002223455212462334
58. Sharma SK,Mohan A. Extrapulmonary tuberculosisIndian J Med ResYear: 20041203165315520485
59. Ainslie GM,Solomon JA,Bateman ED. Lymphocyte and lymphocyte subset numbers in blood and in bronchoalveolar lavage and pleural fluid in various forms of pulmonary tuberculosis at presentation and during recoveryThoraxYear: 19924751381412093
60. Sharma SK,Pande JN,Verma K. Bronchoalveolar lavage (BAL) in miliary tuberculosisTubercleYear: 19886917583254635
61. Sharma SK,Pande JN,Singh YN,Verma K,Kathait SS,Khare SD,et al. Pulmonary function and immunologic abnormalities in miliary tuberculosisAm Rev Respir DisYear: 19921451167711586062
62. Prabhakaran D,Sharma SK,Verma K,Pande JN. Estimation of fibronectin in bronchoalveolar lavage fluid in various diffuse interstitial lung diseasesAm Rev Respir DisYear: 1990141A51
63. Barnes PF,Grisso CL,Abrams JS,Band H,Rea TH,Modlin RL. Gamma delta T lymphocytes in human tuberculosisJ Infect DisYear: 1992165506121538155
64. Ellner JJ. The immune response in human tuberculosis-implications for tuberculosis controlJ Infect DisYear: 1997176135199359738
65. Al-Arif LI,Goldstein RA,Affronti LF,Janicki BW. HLA-Bw15 and tuberculosis in a North American black populationAm Rev Respir DisYear: 197912012758517859
66. Balamurugan A. HLA-DR restriction of Th1/Th2 cytokine profile in tuberculosis: impact of genetic diversity. Ph.D. ThesisYear: 2002New DelhiAll India Institute of Medical Sciences
67. Kumararatne DS,Pithie AS,Drysdale P,Gaston JS,Kiessling R,Iles PB,et al. Specific lysis of mycobacterial antigen-bearing macrophages by class II MHC-restricted polyclonal T cell lines in healthy donors or patients with tuberculosisClin Exp ImmunolYear: 199080314232164902
68. Taype CA,Shamsuzzaman S,Accinelli RA,Espinoza JR,Shaw MA. Genetic susceptibility to different clinical forms of tuberculosis in the Peruvian populationInfect Genet EvolYear: 20101049550420188863
69. Cunha BA,Krakakis J,McDermott BP. Fever of unknown origin (FUO) caused by miliary tuberculosis: diagnostic significance of morning temperature spikesHeart LungYear: 200938778219150533
70. Proudfoot AT,Akhtar AJ,Douglas AC,Horne NW. Miliary tuberculosis in adultsBMJYear: 1969227365780453
71. Flores-Franco RA,Ríos-Ortiz LA. The “damp shadow” sign: another clinical indicator of miliary tuberculosisHeart LungYear: 20103987820109990
72. Thwaites GE,Nguyen DB,Nguyen HD,Hoang TQ,Do TT,Nguyen TC,et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adultsN Engl J MedYear: 200435117415115496623
73. Garg RK,Sharma R,Kar AM,Kushwaha RA,Singh MK,Shukla R,et al. Neurological complications of miliary tuberculosisClin Neurol NeurosurgYear: 20101121889220031301
74. Braidy J,Pothel C,Amra S. Miliary tuberculosis presenting as adrenal failureJ Can Med AssocYear: 1981822546
75. Yokoyama T,Toda R,Kimura Y,Mikagi M,Aizawa H. Addison's disease induced by miliary tuberculosis and the administration of rifampicinIntern MedYear: 200948129730019652434
76. Sharma SK,Mohan A,Kadhiravan T. HIV-TB co-infection: epidemiology, diagnosis and managementIndian J Med ResYear: 20051215506715817963
77. Sharma SK,Mohan A. Co-infection of human immunodeficiency virus (HIV) and tuberculosis: Indian perspectiveIndian J TubercYear: 200451516
78. Sharma SK,Mohan A,Gupta R,Kumar A,Gupta AK,Singhal VK,et al. Clinical presentation of tuberculosis in patients with AIDS: an Indian experienceIndian J Chest Dis Allied SciYear: 199739213209654817
79. Lado Lado FL,Barrio Gomez E,Carballo Arceo E,Cabarcos Ortiz de Barron A. Clinical presentation of tuberculosis and the degree of immunodeficiency in patients with HIV infectionScand J Infect DisYear: 1999313879110528879
80. Kim JY,Jeong YJ,Kim KI,Lee IS,Park HK,Kim YD,et al. Miliary tuberculosis: a comparison of CT findings in HIV-seropositive and HIV-seronegative patientsBr J RadiolYear: 2010832061120197435
81. Zumla A,Malon P,Henderson J,Grange JM. Impact of HIV infection on tuberculosisPostgrad Med JYear: 2000762596810775277
82. Harries A,Maher D,Graham S. TB/HIV: a clinical manualYear: 20042nd edGenevaWorld Health Organization329 WHO/HTM/TB/2004.
83. del Giudice P,Bernard E,Perrin C,Bernardin G,Fouché R,Boissy C,et al. Unusual cutaneous manifestations of miliary tuberculosisClin Infect DisYear: 200030201410619756
84. Shao C,Qu J,He L. A comparative study of clinical manifestations caused by tuberculosis in immunocompromised and non-immunocompromised patientsChin Med J (Engl)Year: 200311617172214642144
85. Goldsack NR,Allen S,Lipman MC. Adult respiratory distress syndrome as a severe immune reconstitution disease following the commencement of highly active antiretroviral therapySex Transm InfectYear: 200379337812902592
86. Mohan A,Sharma SK,Pande JN. Acute respiratory distress syndrome in miliary tuberculosis: a 12-year experienceIndian J Chest Dis Allied SciYear: 199638147528987288
87. Kim JY,Park YB,Kim YS,Kang SB,Shin JW,Park IW,et al. Miliary tuberculosis and acute respiratory distress syndromeInt J Tuberc Lung DisYear: 200373596412733492
88. Penner C,Roberts D,Kunimoto D,Manfreda J,Long R. Tuberculosis as a primary cause of respiratory failure requiring mechanical ventilationAm J Respir Crit Care MedYear: 1995151867727881684
89. Sharma SK,Mohan A,Banga A,Saha PK,Guntupalli KK. Predictors of development and outcome in patients with acute respiratory distress syndrome due to tuberculosisInt J Tuberc Lung DisYear: 2006104293516602408
90. Kim DK,Kim HJ,Kwon SY,Yoon HI,Lee CT,Kim YW,et al. Nutritional deficit as a negative prognostic factor in patients with miliary tuberculosisEur Respir JYear: 2008321031618508814
91. Gupta PP,Mehta D,Agarwal D,Chand T. Recurrent pneumothorax developing during chemotherapy in a patient with miliary tuberculosisAnn Thorac MedYear: 20072173519727372
92. Lakin BD,Riordan FA,John CM. Air leak in miliary tuberculosisAm J Trop Med HygYear: 20098032519270275
93. Krishnaswami KV. Mediastinal emphysema in miliary tuberculosisJAMAYear: 1977692279
94. Mallinson WJ,Fuller RW,Levison DA,Baker LR,Cattell WR. Diffuse interstitial renal tuberculosis - an unusual cause of renal failureQ J MedYear: 198150137487302115
95. Salliot C,Guichard I,Daugas E,Lagrange M,Verine J,Molina JM. Acute kidney disease due to immune reconstitution inflammatory syndrome in an HIV-infected patient with tuberculosisJ Int Assoc Physicians AIDS Care (Chic Ill)Year: 2008717881
96. Asada Y,Hayashi T,Sumiyoshi A,Aburaya M,Shishime E. Miliary tuberculosis presenting as fever and jaundice with hepatic failureHum PatholYear: 1991229241985084
97. Hussain W,Mutimer D,Harrison R,Hubscher S,Neuberger J. Fulminant hepatic failure caused by tuberculosisGutYear: 19953679247797133
98. Seabra J,Coelho H,Barros H,Alves JO,Goncalves V,Rocha-Marques A. Acute tuberculous perforation of the small bowel during antituberculosis therapyJ Clin GastroenterolYear: 19931632028331267
99. Rose AG. Cardiac tuberculosis. A study of 19 patientsArch Pathol Lab MedYear: 198711142263566473
100. Theuer CP,Hopewell PC,Elias D,Schecter GF,Rutherford GW,Chaisson RE. Human immunodeficiency virus infection in tuberculosis patientsJ Infect DisYear: 19901628121972384
101. Cope AP,Heber M,Wilkins EG. Valvular tuberculous endocarditis: a case report and review of the literatureJ InfectYear: 19902129362125624
102. Wainwright J. Tuberculous endocarditis: a report of 2 casesS Afr Med JYear: 1979567313505202
103. Yamane H,Fujiwara T,Doko S,Inada H,Nogami A,Masaki H,et al. Two cases of miliary tuberculosis following prosthetic valve replacementKokyu To JunkanYear: 19893780352799102
104. Felson B,Akers PV,Hall GS,Schreiber JT,Greene RE,Pedrosa CS. Mycotic tuberculous aneurysm of the thoracic aortaJAMAYear: 197723711048402488
105. Doherty JG,Rankin R,Kerr F. Miliary tuberculosis presenting as infection of a pacemaker pulse-generator pocketScott Med JYear: 1996412018658118
106. Shibolet S,Dan M,Jedwab M,Goldhammer Y,Baum GL. Recurrent miliary tuberculosis secondary to infected ventriculoatrial shuntChestYear: 19797632830467121
107. Tseng HL,Roulet F. Cardiac involvement in miliary tuberculosisAm Rev TubercYear: 195368771413104890
108. Biedrzycki OJ,Baithun SI. TB-related sudden death (TBRSD) due to myocarditis complicating miliary TB: a case report and review of the literatureAm J Forensic Med PatholYear: 200627335617133033
109. Wallis PJ,Branfoot AC,Emerson PA. Sudden death due to myocardial tuberculosisThoraxYear: 19843915566701827
110. Meintjes G,Lawn SD,Scano F,Maartens G,French MA,Worodria W,et al. International Network for the Study of HIV-associated IRISTuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settingsLancet Infect DisYear: 20088516318652998
111. Sharma SK,Dhooria S,Barwad P,Kadhiravan T,Ranjan S,Miglani S,et al. A study of TB-associated immune reconstitution inflammatory syndrome using the consensus case-definitionIndian J Med ResYear: 2010131804820571170
112. Jehle AW,Khanna N,Sigle JP,Glatz-Krieger K,Battegay M,Steiger J,et al. Acute renal failure on immune reconstitution in an HIV-positive patient with miliary tuberculosisClin Infect DisYear: 200438e32514765361
113. Tuddenham WJ. Glossary of terms for thoracic radiology: recommendations of the Nomenclature Committee of the Fleischner SocietyAJR Am J RoentgenolYear: 1984143509176380245
114. Sharma SK,Mohan A. Sharma SK,Mohan ADisseminated and miliary tuberculosisTuberculosisYear: 20092nd edNew DelhiJaypee Brothers Medical Publishers493518
115. Mori T. Usefulness of interferon-gamma release assays for diagnosing TB infection and problems with these assaysJ Infect ChemotherYear: 200915143519554399
116. Pai M,Joshi R,Kalantri SP. Sharma SK,Mohan ADiagnosis of latent tuberculosis infection: recent advances and future directionsTuberculosisYear: 20092nd edNew DelhiJaypee Brothers Medical Publishers18699
117. Singh KJ,Ahluwalia G,Sharma SK,Saxena R,Chaudhary VP,Anant M. Significance of haematological manifestations in patients with tuberculosisJ Assoc Physicians IndiaYear: 2001497904
118. Chan CH,Chan TY,Shek AC,Mak TW,Lui SF,Lai KN. Severe hypercalcaemia associated with miliary tuberculosisJ Trop Med HygYear: 19949718028007059
119. Shalhoub RJ,Antoniou LD. The mechanism of hyponatremia in pulmonary tuberculosisAnn Intern MedYear: 196970943625769627
120. Vorherr H,Massry SG,Fallet R,Kaplan L,Kleeman CR. Antidiuretic principle in tuberculous lung tissue of a patient with pulmonary tuberculosis and hyponatremiaAnn Intern MedYear: 19707238375415421
121. Winkler AW,Crankshaw DF. Chloride depletion in conditions other than Addison's diseaseJ Clin InvestYear: 1938171616694540
122. Steiner PE. The histopathological basis for the X-ray diagnosability of pulmonary miliary tuberculosisAm Rev TubercYear: 193736692705
123. Kwong JS,Carignan S,Kang EY,Muller NL,Fitzgerald JM. Miliary tuberculosis. Diagnostic accuracy of chest radiographyChestYear: 1996110339428697830
124. Lee KS,Kim TS,Han J,Hwang JH,Yoon JH,Kim Y,et al. Diffuse micronodular lung disease: HRCT and pathologic findingsJ Comput Assist TomogrYear: 1999239910610050818
125. Jamieson DH,Cremin BJ. High resolution CT of the lungs in acute disseminated tuberculosis and a pediatric radiology perspective of the term “miliary”Pediatr RadiolYear: 19932338038233694
126. Price M. Lymphangitis reticularis tuberculosaTubercleYear: 196849377845716377
127. McGuinness G,Naidich DP,Jagirdar J,Leitman B,McCauley DI. High resolution CT findings in miliary lung diseaseJ Comput Assist TomogrYear: 199216384901592920
128. Sharma SK,Mukhopadhyay S,Arora R,Verma K,Pande JN,Khilnani GC. Computed tomography in miliary tuberculosis: comparison with plain films, bronchoalveolar lavage, pulmonary functions and gas exchangeAustralasian RadiolYear: 1996401138
129. Pipavath SN,Sharma SK,Sinha S,Mukhopadhyay S,Gulati MS. High resolution CT (HRCT) in miliary tuberculosis (MTB) of the lung: correlation with pulmonary function tests & gas exchange parameters in north Indian patientsIndian J Med ResYear: 2007126193818037712
130. Yu RS,Zhang SZ,Wu JJ,Li RF. Imaging diagnosis of 12 patients with hepatic tuberculosisWorld J GastroenterolYear: 20041016394215162540
131. Willcox PA,Potgieter PD,Bateman ED,Benatar SR. Rapid diagnosis of sputum negative miliary tuberculosis using the flexible fibreoptic bronchoscopeThoraxYear: 19864168143097866
132. Ibrarullah M,Mohan A,Sarkari A,Srinivas M,Mishra A,Sundar TS. Abdominal tuberculosis: diagnosis by laparoscopy and colonoscopyTrop GastroenterolYear: 200223150312693163
133. World Health OrganizationCommercial serodiagnostic tests for diagnosis of tuberculosis: policy statement. WHO/HTM/TB/2011.5Year: 2011GenevaWorld Health Organization
134. Riquelme A,Calvo M,Salech F,Valderrama S,Pattillo A,Arellano M,et al. Value of adenosine deaminase (ADA) in ascetic fluid for the diagnosis of tuberculous peritonitis: a meta-analysisJ Clin GastroenterolYear: 2006407051016940883
135. Sharma SK,Suresh V,Mohan A,Kaur P,Saha P,Kumar A,et al. A prospective study of sensitivity and specificity of adenosine deaminase estimation in the diagnosis of tuberculosis pleural effusionIndian J Chest Dis Allied SciYear: 2001431495511529433
136. Sharma SK,Banga A. Diagnostic utility of pleural fluid IFN gamma in tuberculosis pleural effusionJ Interferon Cytokine ResYear: 200424213715144567
137. Sharma SK,Banga A. Pleural fluid interferon-gamma and adenosine deaminase levels in tuberculosis pleural effusion: a cost-effectiveness analysisJ Clin Lab AnalYear: 20051940615756707
138. Sharma SK,Tahir M,Mohan A,Smith-Rohrberg D,Mishra HK,Pandey RM. Diagnostic accuracy of ascitic fluid IFN-gamma and adenosine deaminase assays in the diagnosis of tuberculous ascitesJ Interferon Cytokine ResYear: 200626484816800787
139. Rana SV,Chacko F,Lal V,Arora SK,Parbhakar S,Sharma SK,et al. To compare CSF adenosine deaminase levels and CSF-PCR for tuberculous meningitisClin Neurol NeurosurgYear: 20101124243020347212
140. Tuon FF,Higashino HR,Lopes MI,Litvoc MN,Atomiya AN,Antonangelo L,et al. Adenosine deaminase and tuberculous meningitis-a systematic review with meta-analysisScand J Infect DisYear: 20104219820720001225
141. World Health OrganizationPolicy statement. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB)Year: 2008Month: 6 Day: 27 accessed on April 19, 2012 Available from: http://www.who.int/tb/features_archive/policy.pdf.
142. Boehme CC,Nabeta P,Hillemann D,Nicol MP,Shenai S,Krapp F,et al. Rapid molecular detection of tuberculosis and rifampin resistanceN Engl J MedYear: 201036310051520825313
143. World Health OrganizationRapid implementation of the Xpert MTB/RIF diagnostic test: technical and operational ‘How-to’; practical considerationsYear: 2011GenevaWorld Health Organization WHO/HTM/TB/2011.2.
144. Ling DI,Zwerling AA,Pai M. Rapid diagnosis of drug-resistant TB using line probe assays: from evidence to policyExpert Rev Respir MedYear: 20082583820477293
145. Goo JM,Im JG,Do KH,Yeo JS,Seo JB,Kim HY,et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 casesRadiologyYear: 20002161172110887236
146. Ichiya Y,Kuwabara Y,Sasaki M,Yoshida T,Akashi Y,Murayama S,et al. FDG-PET in infectious lesions: The detection and assessment of lesion activityAnn Nucl MedYear: 199610185918800447
147. Williams NH Jr,Kane C,Yoo OH. Pulmonary function in miliary tuberculosisAm Rev Respir DisYear: 1973107858604695639
148. Sharma SK,Ahluwalia G. Effect of antituberculosis treatment on cardiopulmonary responses to exercise in miliary tuberculosisIndian J Med ResYear: 2006124411817159261
149. McClement JH,Renzetti AD Jr,Carroll D,Himmelstein A,Cournand A. Cardiopulmonary function in hematogenous pulmonary tuberculosis in patients with streptomycin therapyAm Rev TubercYear: 195164588601
150. Sharma SK,Ahluwalia G. Exercise testing in miliary tuberculosis–some factsIndian J Med ResYear: 2007125182317431290
151. World Health OrganizationTreatment of tuberculosis: Guidelines for National ProgrammesYear: 20033rd edGenevaWorld Health Organization WHO/CDS/TB/2003.313.
152. Blumberg HM,Burman WJ,Chaisson RE,Daley CL,Etkind SC,Friedman LN,et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America. Treatment of tuberculosisAm J Respir Crit Care MedYear: 20031676036212588714
153. National Institute for Health and Clinical Excellence, National Collaborating Centre for Chronic Conditions. Management of non-respiratory tuberculosisTuberculosis: clinical diagnosis and management of tuberculosis, and measures for its prevention and controlYear: 2006LondonRoyal College of Physicians6376
154. American Academy of Pediatrics Committee on Infectious DiseasesChemotherapy for tuberculosis in infants and childrenPediatricsYear: 19928916151728006
155. World Health OrganizationTreatment of tuberculosis. GuidelinesYear: 20094th edGenevaWorld Health Organization WHO/HTM/TB/2009.420.
156. Sharma SK,Mohan A. Gupta SBAntituberculosis treatment induced hepatotoxicity: from bench to bed-sideMedicine updateYear: 2005MumbaiAssociation of Physicians of India47984
157. Sharma SK. Antituberculosis drugs and hepatotoxicityInfect Genet EvolYear: 200441677015157635
158. Saukkonen JJ,Cohn DL,Jasmer RM,Schenker S,Jereb JA,Nolan CM,et al. An official ATS statement: Hepatotoxicity of anti tuberculosis therapyAm J Respir Crit Care MedYear: 20061749355217021358
159. Singla R,Sharma SK,Mohan A,Makharia G,Sreenivas V,Jha B,et al. Evaluation of risk factors for antituberculosis treatment induced hepatotoxicityIndian J Med ResYear: 201013281620693595
160. Sarda P,Sharma SK,Mohan A,Makharia G,Jayaswal A,Pandey RM. Role of acute viral hepatitis as a confounding factor in antituberculosis treatment induced hepatotoxicityIndian J Med ResYear: 200912964719287059
161. Sharma SK,Singla R,Sreenivas V,Kumar S,Jha B,Rathored J,et al. Acute viral hepatitis as a confounding factor in patients with antituberculosis treatment induced hepatotoxicityIndian J Med ResYear: 2009130200119797819
162. Sharma SK,Singla R,Sarda P,Mohan A,Makharia G,Jayaswal A,et al. Safety of 3 different reintroduction regimens of antituberculosis drugs after development of antituberculosis treatment-induced hepatotoxicityClin Infect DisYear: 201050833920156055
163. Joint Tuberculosis Committee of the British Thoracic SocietyChemotherapy and management of tuberculosis in the United Kingdom: recommendationsThoraxYear: 199853536489797751
164. Sun TN,Yang JY,Zheng LY,Deng WW,Sui ZY. Chemotherapy and its combination with corticosteroids in acute miliary tuberculosis in adolescents and adults: analysis of 55 casesChin Med J (Engl)Year: 198194309146788467
165. Massaro D,Katz S,Sachs M. Choroidal tubercles. A clue to hematogenous tuberculosisAnn Intern MedYear: 1964602314114114443
166. Marais S,Wilkinson RJ,Pepper DJ,Meintjes G. Management of patients with the immune reconstitution inflammatory syndromeCurr HIV/AIDS RepYear: 200961627119589302
167. World Health OrganizationRapid advice. Antiretroviral therapy for HIV infection in adults and adolescentsYear: 2009GenevaWorld Health Organization
168. Pozniak AL,Coyne KM,Miller RL,Lipman MCI,Freedman AR,Ormerod LP,et al. BHIVA Guidelines SubcommitteeBritish HIV Association guidelines for the treatment of TB/HIV coinfection 2011HIV MedYear: 2011125172421951595
169. Guyatt GH,Oxman AD,Vist GE,Kunz R,Falck-Ytter Y,Alonso-Coello P,et al. GRADE Working GroupGRADE: an emerging consensus on rating quality of evidence and strength of recommendationsBMJYear: 2008336924618436948
170. Trunz BB,Fine P,Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectivenessLancetYear: 200636711738016616560
171. American Thoracic SocietyTargeted tuberculin testing and treatment of latent tuberculosis infectionMMWR Recomm RepYear: 200049151
172. Kaufmann SH,Hussey G,Lambert PH. New vaccines for tuberculosisLancetYear: 20103752110920488515
173. Parida SK,Kaufmann SH. Novel tuberculosis vaccines on the horizonCurr Opin ImmunolYear: 2010223748420471231

Figures

[Figure ID: F1]
Fig. 1 

Chest radiograph (postero-anterior view) (A) and chest CT (lung window) (B) showing classical miliary pattern.



[Figure ID: F2]
Fig. 2 

Median prevalence of symptoms and signs at initial presentation in adult patients with miliary tuberculosis. Data from references 9, 18, 2427,29, 3134,36, 37, 3942,44.



[Figure ID: F3]
Fig. 3 

Clinical photograph of a child showing cutaneous lesions of miliary tuberculosis (Kind courtesy: Dr M. Ramam, Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India).



[Figure ID: F4]
Fig. 4 

Chest radiograph (postero-anterior view) (A) and chest CT (lung window) (B) showing classical miliary pattern, tree-in-bud appearance (B) (arrow). The patient also had cerebral tuberculomas (arrows) and TB meningitis (C). Choroid tubercles, located in the posterior pole of the orbit (D) (arrows) offered an early valuable clue to the diagnosis. The present case illustrates the importance of documenting the presence of neurological involvement, particularly, TB meningitis in patients with miliary TB and thereby ensuring adequate duration of anti-tuberculosis treatment and need for corticosteroid treatment.



[Figure ID: F5]
Fig. 5 

Chest radiograph (postero-anterior view) of a pregnant woman who presented with prolonged pyrexia showing a classical miliary pattern (A). Fundus examination following mydriatic administration in both the eyes revealed choroid tubercles and had raised the suspicion of miliary TB. The patient developed ARDS during the course of her illness. Chest radiograph (antero-posterior view), obtained with a portable X-ray machine, bed-side showing bilateral frontal opacities suggestive of ARDS (B). CT chest obtained at the same time reveals air-space consolidation (C and D); air-bronchogram (arrow) (D). While assisted ventilation was being administered, the patient developed pneumothorax (asterisk) on the right side; collapsed lung border is also evident (arrow) (E). The patient required tube thoracostomy and underwater seal drainage. Eventually the patient was weaned off the ventilator and the intercostal tube was removed following resolution of the pneumothorax. The chest radiograph obtained thereafter shows significant improvement in the lesions (F). The patient survived the turbulent in-hospital course, went on to complete full-term of pregnancy and was successfully delivered a live baby. ARDS, acute respiratory distress syndrome; CT, computed tomography; TB, tuberculosis.



[Figure ID: F6]
Fig. 6 

CT of the chest showing miliary sarcoidosis. While the lesions of miliary TB (Fig. 1B) are randomly distributed, the lesions of miliary sarcoidosis are distributed along the bronchovascular bundle (lymphangitic distribution). Thus transbronchial lung biopsy gives a higher diagnostic yield in miliary sarcoidosis.



[Figure ID: F7]
Fig. 7 

Algorithm for the diagnostic work-up of a patient with suspected miliary TB. The clinical and imaging diagnostic work-up should also aim at accurately assessing the extent of extrapulmonary involvement to facilitate monitoring and ensure adequate duration of treatment. All laboratory testing, especially, antituberculosis drug-susceptibility testing must be carried out in quality assured, periodically accredited laboratories. *Often used in children; †FNAC/excision biopsy; ‡ Radiologically guided FNAC/biopsy; §Mediastinoscopic/video-assisted thoracoscopic surgery, biopsy; ||Laparoscopic biopsy; ¶Useful in advanced HIV infection. TB, tuberculosis; TST, tuberculin skin test; IGRA, interferon-γ release assays; HRCT, high resolution computed tomography; CECT, contrast enhanced computed tomography; MRI, magnetic resonance imaging; FNAC, fine needle aspiration cytology; HIV, human immunodeficiency virus; AFB, acid-fast bacilli; L-J, Lowenstein-Jensen medium; DST, drug-susceptibility testing; MGIT, mycobacterial growth inhibitor tube; BACTEC, radiometric culture method; PCR, polymerase chain reaction; GeneExpert MTB/RIF, GeneXpert MTB/RIF assay (Cepheid, Sunnyvale, CA); LPA, line probe assay.



[Figure ID: F8]
Fig. 8 

Chest radiograph in a patient with HIV/AIDS (postero-anterior view) (A) and chest CT (lung window) (B) showing classical miliary pattern. The CECT chest (mediastinal window) also reveals intrathoracic lymphadenopathy (arrow) (C) and pericardial thickening and effusion (D). The CECT of the abdomen of the same patient reveals focal miliary lesions in the liver (square, arrow) and spleen (circle) (E) and retroperitoneal lymphadenopathy (arrow) (F); pelvic CECT shows a prostatic abscess (arrows) (G). Ultrasound guided trans-rectal prostatic aspirate smear and culture examination confirmed the diagnosis of miliary TB. The diagnostic evaluation of this patient illustrates the judicious use of imaging modalities to define the extent of organ system involvement and procuring tissue for diagnostic confirmation. Such extensive involvement usually occurs in HIV/AIDS with miliary TB. HIV, human immunodeficiency virus; AIDS, acquired immunodeficiency syndrome; CT, computed tomography; CECT, contrast enhanced computed tomography; TB, tuberculosis.



[Figure ID: F9]
Fig. 9 

Chest CT (lung window) of the same patient as in Fig. 4 showing pulmonary parenchymal lesions (black arrow) (A). In addition to the miliary pattern, well-defined, linear, branching opacities (tree-in-bud appearance) (thick white arrows) (A and B) are also seen. This pattern is evident when centrilobular bronchioles are dilated, or, are filled with mucus, fluid or, pus and represents endobronchial spreading of infection. 18FDG-PET CT of the same patient showing increased activity in the pulmonary parenchymal lesions (arrows) but not in the miliary lesions (C and D). The 18FDG-PET has potential to further understanding the clinico-radiographic-functional correlation in miliary tuberculosis and merits further study. However, it may not be useful in intracranial TB. CT, computed tomography; 18FDG-PET CT, 18F labelled 2-deoxy-D-glucose positron emission tomography-computed tomography; TB, tuberculosis.



[Figure ID: F10]
Fig. 10 

Chest radiograph (poster-anterior view) (A) and chest CT (lung window) (B and C) showing predominance of miliary lesions on the right side. 18FDG-PET CT of the same patient (D) showing increased activity in the coalesced pulmonary lesions, which is evident more prominently on the right side. CT, computed tomography; 18FDG-PET CT, 18F labelled 2-deoxy-D-glucose positron emission tomography-computed tomography.



[Figure ID: F11]
Fig. 11 

Cumulative diagnostic yield of various body fluids and tissues in the diagnosis of miliary TB. Cumulative diagnostic yield is expressed as percentage. The data are pooled for various specimen categories and may not be comparable across various series because different criteria were employed; however, these can be appropriately used in the individual patient to ascertain the diagnosis of miliary TB. FOB, fibreoptic bronchoscopy; CSF, cerebrospinal fluid; LN, lymph node; BM, bone marrow; Bx, biopsy. Source: Refs 9,18, 2427,29, 3134,36, 37, 3942,44



[Figure ID: F12]
Fig. 12A 

Algorithm for treatment of miliary TB patients with and without HIV co-infection.TB, tuberculosis; HIV, human immunodeficiency virus; +, seropositive; -, seronegative; ART, anti-retroviral treatment; IRIS, immune reconstitution inflammatory syndrome; DIH, anti-tuberculosis drug induced hepatotoxicity



[Figure ID: F13]
Fig. 12B 

Guidelines on timing of antiretroviral treatment in patients with HIV-tuberculosis co-infection. HIV, human immunodeficiency virus; TB, tuberculosis; ART, antiretroviral therapy

Source: Ref. 167



Tables
[TableWrap ID: T1] Table I 

Why miliary TB is a challenge for diagnosis and treatment?



[TableWrap ID: T2] Table II 

Risk of developing miliary TB with the use of anti-TNF agents in patients with rheumatoid arthritis



[TableWrap ID: T3] Table III 

Clinical presentation of miliary TB in adult patients with and without HIV co-infection



[TableWrap ID: T4] Table IV 

Uncommon clinical manifestations and complications in miliary tuberculosis



[TableWrap ID: T5] Table V 

Some conditions presenting with a miliary pattern on the chest radiograph



[TableWrap ID: T6] Table VI 

Laboratory abnormalities in miliary TB



[TableWrap ID: T7] Table VII 

Chest radiographic abnormalities in miliary TB



[TableWrap ID: T8] Table VIII 

Predictors of poor outcome in patients with miliary TB



[TableWrap ID: T9] Table IX 

Key practical issues in the diagnosis and management of miliary TB




Article Categories:
  • Review Article

Keywords: Complications, diagnosis, human immunodeficiency virus, miliary tuberculosis, treatment.

Previous Document:  Serological tests for the diagnosis of active tuberculosis: relevance for India.
Next Document:  Current tuberculosis diagnostic tools & role of urease breath test.