Document Detail


Cell growth kinetics, division asymmetry and volume control at division in the marine dinoflagellate Gonyaulax polyedra: a model of circadian clock control of the cell cycle.
MedLine Citation:
PMID:  2777927     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
A new method of determining the dependence of cell growth on the initial cell volume in the absence of cell division is presented. The assumptions are that volume in a certain period of time is either increasing or decreasing, but not both, and is independent of the history of cells. Applying this method to Gonyaulax polyedra in a 12h light-12h dark cycle, growth in volume between the 3rd and 12th hours of the light period is found to be more exponential-like than linear. The magnitude of growth in the time period is determined solely by cell volume and environmental conditions, not by cell age. All cells decrease in volume slightly in the dark from the 12th to 23rd hour, and then increase a little from the 23rd to 3rd hour of the following day. Cell division in this species is significantly asymmetric, and the extent of asymmetry is estimated mathematically. Simulations based on the growth patterns and the asymmetric division reveal that cell division must at least partly depend on the volume of cells. The dependence of conditional cell division probability on cell volume is then experimentally determined. The probability is zero up to a certain cell volume, and then it gradually increases to a plateau level, which is less than unity. Neither the strict size control model nor the transition probability model is fully consistent with the observed shape of the conditional probability function. A hybrid model postulating a 'sloppy' critical volume with a constant probability of division above that volume adequately accounts for the conditional probability. With the use of the observed volume growth law, cell division dependence on volume, and the extent of asymmetry in cell division, cell volume distributions are successfully simulated for cells growing in a 12h light-12h dark cycle. Another simulation reveals that the true coefficient of variation in generation time is 33%. On the basis of these findings, a model of the cell cycle is presented that incorporates the circadian clock as a cyclic G1 phase. According to this scheme, cells satisfying the minimum cell volume requirement between the 12th and the 18th hour probably exit to the replication/segregation sequence ending in division, and re-enter the cyclic portion after a fixed time interval.
Authors:
K Homma; J W Hastings
Related Documents :
16037087 - Functional role of na+-hco3- cotransport in migration of transformed renal epithelial c...
10898797 - The alpha4 isoform of the na,k-atpase is expressed in the germ cells of the testes.
3367667 - Culture media variation as related to in vitro aging of human fibroblasts: ii. effects ...
2472417 - Effect of na + flux inhibitors on induction of c-fos, c-myc, and odc genes during cell ...
302657 - Cell turnover in the beak of rana pipiens.
22232287 - Ent1, a ribavirin transporter, plays a pivotal role in antiviral efficacy of ribavirin ...
Publication Detail:
Type:  Journal Article; Research Support, U.S. Gov't, P.H.S.    
Journal Detail:
Title:  Journal of cell science     Volume:  92 ( Pt 2)     ISSN:  0021-9533     ISO Abbreviation:  J. Cell. Sci.     Publication Date:  1989 Feb 
Date Detail:
Created Date:  1989-10-26     Completed Date:  1989-10-26     Revised Date:  2007-11-14    
Medline Journal Info:
Nlm Unique ID:  0052457     Medline TA:  J Cell Sci     Country:  ENGLAND    
Other Details:
Languages:  eng     Pagination:  303-18     Citation Subset:  IM    
Affiliation:
Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animals
Cell Cycle
Cell Division
Circadian Rhythm*
Dinoflagellida / cytology*
Models, Biological*
Grant Support
ID/Acronym/Agency:
GM 19536/GM/NIGMS NIH HHS

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Ultrastructural changes accompany inhibition of proteoglycan synthesis in chondrocytes by Cyclofenil...
Next Document:  Cell volume and dry weight of cultured Tetrahymena.