Document Detail


Cell death along single microfluidic channel after freeze-thaw treatments.
MedLine Citation:
PMID:  20644680     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Cryotherapy is a prospective green method for malignant tumor treatment. At low temperature, the cell viability relates with the cooling rate, temperature threshold, freezing interface, as well as ice formation. In clinical applications, the growth of ice ball must reach a suitable size as cells could not be all killed at the ice periphery. The cell death ratio at the ice periphery is important for the control of the freezing destruction. The mechanisms of cryoinjury around the ice periphery need thorough understanding. In this paper, a primary freeze-thaw control was carried out in a cell culture microchip. A series of directional freezing processes and cell responses was tested and discussed. The temperature in the microchip was manipulated by a thermoelectric cooler. The necrotic and apoptotic cells under different cryotreatment (duration of the freezing process, freeze-thaw cycle, postculture, etc.) were stained and distinguished by propidium iodide and fluorescein isothiocyanate (FITC)-Annexin V. The location of the ice front was recorded and a cell death boundary which was different from the ice front was observed. By controlling the cooling process in a microfluidic channel, it is possible to recreate a sketch of biological effect during the process of simulated cryosurgery.
Authors:
Yuhui Li; Fen Wang; Hao Wang
Publication Detail:
Type:  Journal Article     Date:  2010-03-25
Journal Detail:
Title:  Biomicrofluidics     Volume:  4     ISSN:  1932-1058     ISO Abbreviation:  Biomicrofluidics     Publication Date:  2010  
Date Detail:
Created Date:  2010-07-20     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101293825     Medline TA:  Biomicrofluidics     Country:  United States    
Other Details:
Languages:  eng     Pagination:  14111     Citation Subset:  -    
Affiliation:
Department of Energy and Resources Engineering, Lab of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, Beijing 100871, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Induced charge electro-osmotic concentration gradient generator.
Next Document:  Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuha...