Document Detail

Cardioprotective effect of lycopene against isoproterenol-induced myocardial infarction in rats.
MedLine Citation:
PMID:  23060410     Owner:  NLM     Status:  Publisher    
The present study was designed to evaluate the cardioprotective potential of lycopene (LCP) against isoproterenol (ISP)-induced myocardial infarction (MI), by assessing hemodynamic, biochemical and histopathological parameters. Wistar male albino rats were orally administered with LCP (0.5, 1.0 and 1.5 mg/kg) or with vehicle for 30 days, with concurrent subcutaneous injections of ISP (85 mg/kg) on days 28 and 29. ISP significantly (p < 0.05) decreased systolic, diastolic and mean arterial blood pressure (SAP, DAP and MAP, respectively) and heart rate (HR). ISP also decreased contractility (+LVdP/dt), relaxation (-LVdP/dt) and increased left ventricular end-diastolic pressure (LVEDP). In addition to functional impairment, ISP also caused a significant (p < 0.05) decrease in antioxidants, namely, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione (GSH), cardiac injury marker enzymes, creatine phosphokinase-MB (CK-MB) and lactate dehydrogenase (LDH), as well as induced lipid peroxidation, malonaldialdehyde (MDA) and histopathological alterations in heart. However, pretreatment with LCP significantly (p < 0.05) attenuated ISP-induced cardiac dysfunction as evidenced by improved SAP, DAP, MAP, HR, (±)LVdP/dt and reduced LVEDP. Pretreatment with LCP also significantly (p < 0.05) prevented the depletion of antioxidants (SOD, CAT, GSHPx and GSH), myocyte injury marker enzymes (CK-MB and LDH) and inhibited lipid peroxidation and MDA formation in the heart. Furthermore, reduced necrosis, edema and infiltration of inflammatory cells on histopathological examination also depicted the protective effect of LCP against the deleterious effect of ISP. Based on the results, it is suggested that LCP possesses significant cardioprotective potential and may serve as an adjunct in treatment and prophylaxis of MI.
S Ojha; S Goyal; C Sharma; S Arora; S Kumari; Ds Arya
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-11
Journal Detail:
Title:  Human & experimental toxicology     Volume:  -     ISSN:  1477-0903     ISO Abbreviation:  Hum Exp Toxicol     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9004560     Medline TA:  Hum Exp Toxicol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
1Cardiovascular Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Exposures to 1,3-dimethylamylamine-containing products reported to Texas poison centers.
Next Document:  Emergency do not consume/do not use concentrations for blended phosphates in drinking water.