Document Detail

Cardiac mechanoenergetics for understanding isoproterenol-induced rat heart failure.
MedLine Citation:
PMID:  22687629     Owner:  NLM     Status:  Publisher    
Considering from clinical implication, it is often complained that short-term experimental diseased heart models do not mimic long-term diseased hearts that one often clinically encountered. The left ventricle (LV) function in rat cardiac hypertrophy models treated with isoproterenol (ISO) up to 16 weeks was followed up with a non-invasive echocardiography. Infusion of either ISO (1.2mgkg(-1)day(-1) for 3 days-16 weeks) or vehicle (saline 24μlday(-1) for 3 days-16 weeks; SA group) was performed by subcutaneously implanting osmotic minipump. LV and right ventricle (RV) weight ratios to body weight (mgg(-1)) in SA, ISO3d, ISO7d and ISO4w were: 1.94±0.10 and 0.54±0.04 (n=7), 2.56±0.10 and 0.66±0.05 (n=7), 2.50±0.25 and 0.64±0.07 (n=10) and 2.40±0.08 and 0.59±0.08 (n=9), respectively. From echocardiography, the LV function of the hypertrophy models at 3 days, 1 and 2 weeks was unchanged but the model at the longer-term than 4 weeks resulted in prolonged systolic failure. These results indicated that only 3-day ISO infusion induced the hypertrophy model similar in shape and function to that induced by 2-week ISO infusion; the 3-day model sufficiently represents the effects of 2-week ISO infusion. In this review, left ventricular (LV) function was compared between rat cardiac hypertrophy models treated with ISO for 3 days (ISO3d) and 7 days (ISO7d) by analyzing LV mechanical work and energetics. The LV mechanical work and energetics was unchanged in SA, ISO3d and ISO7d groups. The LV relaxation rate at 240bpm in ISO3d and ISO7d groups was significantly slower than that in SA group with unchanged contraction rate. The amounts of expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a), phospholamban (PLB), phosphorylated-Ser(16) PLB (p-PLB), phospholemman (PLM) and Na(+)-K(+)-ATPase (NKA) are significantly decreased in ISO3d and ISO7d groups. Furthermore, the marked collagen production (types I and III) was observed in ISO3d and ISO7d groups. These results suggested the possibility that physiological LV function is compensated, although molecular changes have been generated even in the short-term hypertrophy model. Although a novel histone deacetylase (HDAC) inhibitor, has some beneficial effects on hemodynamics, it has no effects of anti-hypertrophic modalities in ISO3d model. However, a selective sodium proton exchanger-1 (NHE-1) inhibitor normalized ISO-induced down-regulation of SERCA2a without changes in pPLB/PLB expression in the ISO7d model and ameliorates cardiac Ca(2+) handling impairment and prevents the development of cardiac dysfunction. This result indicated that SERCA2a is a key molecule in the ISO7d model. Slow LV relaxation rate in ISO7d model may be due to down-regulation of SERCA2a. In conclusion, lowering the heart rate make it possible to rescue the impairment of LV mechanical work and energetics in the ISO-induced compensatory hypertrophied rat hearts, providing basic evidence for clinical therapy for patients with some types of cardiac failure.
Miyako Takaki
Related Documents :
21925839 - Cardioprotective effects of low-dose combination therapy with a statin and an angiotens...
22043289 - Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 ...
1042009 - The role of ambulatory monitoring in postinfarction patients.
11104869 - Short- and long-term risk factors for sudden death in patients with stable angina.
22698829 - Blockade of electron transport before ischemia protects mitochondria and decreases myoc...
7200079 - Clinical management of ventricular arrhythmias.
6711459 - Anatomy and vasculature of a minke whale heart.
10084059 - Predictors of death and mode of death during long-term follow-up among patients with un...
1600359 - Conversion of atrial fibrillation to sinus rhythm: a possible side effect of transesoph...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-6-9
Journal Detail:
Title:  Pathophysiology : the official journal of the International Society for Pathophysiology / ISP     Volume:  -     ISSN:  0928-4680     ISO Abbreviation:  -     Publication Date:  2012 Jun 
Date Detail:
Created Date:  2012-6-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9433813     Medline TA:  Pathophysiology     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Seroprevalence of hepatitis A virus antibody in a population aged 0-30 years in Shanghai, China: imp...
Next Document:  Comparison of a possession score and a poverty index in predicting anaemia and undernutrition in pre...