Document Detail

Capillary pressure may predict preclinical changes in the eye.
MedLine Citation:
PMID:  20526763     Owner:  NLM     Status:  MEDLINE    
AIMS/HYPOTHESIS: Microvascular dysfunction is associated with end-organ damage. Macular oedema is an important component of diabetic retinopathy. Macular thickness can be accurately quantified by optical coherence tomography (OCT), enabling accurate assessment of the macular prior to clinically apparent abnormalities. We investigated whether macular (fovea) thickness in non-diabetic individuals is related to the microvascular variables controlling fluid filtration across a blood vessel wall, in particular capillary pressure and the microvascular filtration capacity (Kf).
METHODS: We recruited 50 non-diabetic individuals (25 men, 25 women; age range: 26-78 years; BMI range: 20-46 kg/m(2)). Fovea thickness was assessed by OCT. Microvascular assessments included: finger nailfold capillary pressure; Kf; microvascular structural assessments, i.e. skin vasodilatory capacity, minimum vascular resistance (MVR) and microvascular distensibility; and endothelial function.
RESULTS: At 214.6 (19.9) microm (mean [SD]), fovea thickness was within normal range. Capillary pressure, adjusted for BMI, was associated with fovea thickness (standardised beta 0.573, p = 0.006, linear regression). Fovea thickness was not associated with Kf, microvascular structural assessments or endothelial function. Capillary pressure was still associated with fovea thickness when adjusted for microvascular variables (Kf, vasodilatory capacity, MVR, microvascular distensibility or endothelial function), or for risk factors for diabetes (systemic blood pressure, insulin sensitivity, inflammation, glycaemic status and lipids) and age.
CONCLUSIONS/INTERPRETATION: Capillary pressure, a key determinant of movement of fluid across a blood vessel wall, is associated with fovea thickness in non-diabetic individuals. This suggests that with regard to potential preventative or therapeutic targets, attention should be directed at the mechanisms determining retinal microvascular pressure.
K M Gooding; J E Tooke; H von Lany; M Mitra; R Ling; C I Ball; D Mawson; K Skinner; A C Shore
Related Documents :
3515823 - Effects of dobutamine on renal function in normal man.
5540173 - Postglomerular vascular protein concentration: evidence for a causal role in governing ...
10819253 - Hydrostatic and hydrodynamic considerations in shunted normal pressure hydrocephalus.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2010-06-06
Journal Detail:
Title:  Diabetologia     Volume:  53     ISSN:  1432-0428     ISO Abbreviation:  Diabetologia     Publication Date:  2010 Sep 
Date Detail:
Created Date:  2010-07-28     Completed Date:  2010-11-04     Revised Date:  2013-05-29    
Medline Journal Info:
Nlm Unique ID:  0006777     Medline TA:  Diabetologia     Country:  Germany    
Other Details:
Languages:  eng     Pagination:  2029-35     Citation Subset:  IM    
Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Diabetic Retinopathy / diagnosis,  physiopathology*
Fovea Centralis / blood supply
Macula Lutea / blood supply*
Macular Edema / diagnosis,  physiopathology*
Middle Aged
Tomography, Optical Coherence

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Ability of traditional lipid ratios and apolipoprotein ratios to predict cardiovascular risk in peop...
Next Document:  A qualitative study of the cultural appropriateness of the Diagnostic Interview Schedule for Childre...