Document Detail

Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology.
MedLine Citation:
PMID:  24838552     Owner:  NLM     Status:  Publisher    
The origin of the internal "sensory conflict" stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei that respond preferentially to passive head movements. During active movement, the semicircular canal and otolith input ("reafference") to these neurons are canceled by a mechanism comparing the expected consequences of self-generated movement (estimated with an internal model-presumably located in the cerebellum) with the actual sensory feedback. The un-canceled component ("exafference") resulting from passive movement normally helps compensate for unexpected postural disturbances. Notably, the existence of such vestibular "sensory conflict" neurons had been postulated as early as 1982, but their existence and putative role in posture control and motion sickness have been long debated. Here, we review the development of "sensory conflict" theories in relation to recent evidence for brainstem and cerebellar reafference cancelation, and identify some open research questions. We propose that conditions producing persistent activity of these neurons, or their targets, stimulate nearby brainstem emetic centers-via an as yet unidentified mechanism. We discuss how such a mechanism is consistent with the notable difference in motion sickness susceptibility of drivers as opposed to passengers, human immunity to normal self-generated movement and why head restraint or lying horizontal confers relative immunity. Finally, we propose that fuller characterization of these mechanisms and their potential role in motion sickness could lead to more effective, scientifically based prevention and treatment for motion sickness.
Charles M Oman; Kathleen E Cullen
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-5-18
Journal Detail:
Title:  Experimental brain research     Volume:  -     ISSN:  1432-1106     ISO Abbreviation:  Exp Brain Res     Publication Date:  2014 May 
Date Detail:
Created Date:  2014-5-19     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0043312     Medline TA:  Exp Brain Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Memory-guided obstacle crossing: more failures were observed for the trail limb versus lead limb.
Next Document:  Infusion of growth hormone into the hippocampus induces molecular and behavioral responses in mice.