Document Detail

Boundary monomers in the dimer model.
MedLine Citation:
PMID:  18643236     Owner:  NLM     Status:  PubMed-not-MEDLINE    
The correlation functions of an arbitrary number of boundary monomers in a system of close-packed dimers on a square lattice are computed exactly in the scaling limit. The equivalence of the 2n -point correlation functions with those of a complex free fermion is proved, thereby reinforcing the description of the monomer-dimer model by a conformal free-field theory with central charge c=1 .
Vyatcheslav B Priezzhev; Philippe Ruelle
Related Documents :
15267316 - Interfacing brownian dynamics simulations.
21944186 - Modeling and development of a low frequency contactless dielectrophoresis (cdep) platfo...
18523366 - Prosodic strengthening in transboundary v-to-v lingual movement in american english.
25300066 - Giant magnetoconductance oscillations in hybrid superconductor-semiconductor core/shell...
17930046 - Viscous flow over a chemically patterned surface.
19373366 - Continuous-wave raman amplification in silicon waveguides: beyond the undepleted pump a...
Publication Detail:
Type:  Journal Article     Date:  2008-06-19
Journal Detail:
Title:  Physical review. E, Statistical, nonlinear, and soft matter physics     Volume:  77     ISSN:  1539-3755     ISO Abbreviation:  Phys Rev E Stat Nonlin Soft Matter Phys     Publication Date:  2008 Jun 
Date Detail:
Created Date:  2008-07-22     Completed Date:  2008-09-15     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101136452     Medline TA:  Phys Rev E Stat Nonlin Soft Matter Phys     Country:  United States    
Other Details:
Languages:  eng     Pagination:  061126     Citation Subset:  -    
Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Fractal probability laws.
Next Document:  Continuous-time quantum walks on one-dimensional regular networks.