Document Detail


Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.
MedLine Citation:
PMID:  23319712     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
This paper explores the influence of blockage and free-surface deformation on the hydrodynamic performance of a generic marine cross-flow turbine. Flows through a three-bladed turbine with solidity 0.125 are simulated at field-test blade Reynolds numbers, O(10(5)-10(6)), for three different cross-stream blockages: 12.5, 25 and 50 per cent. Two representations of the free-surface boundary are considered: rigid lid and deformable free surface. Increasing the blockage is observed to lead to substantial increases in the power coefficient; the highest power coefficient computed is 1.23. Only small differences are observed between the two free-surface representations, with the deforming free-surface turbine out-performing the rigid lid turbine by 6.7 per cent in power at the highest blockage considered. This difference is attributed to the increase in effective blockage owing to the deformation of the free surface. Hydrodynamic efficiency, the ratio of useful power generated to overall power removed from the flow, is found to increase with blockage, which is consistent with the presence of a higher flow velocity through the core of the turbine at higher blockage ratios. Froude number is found to have little effect on thrust and power coefficients, but significant influence on surface elevation drop across the turbine.
Authors:
Claudio A Consul; Richard H J Willden; Simon C McIntosh
Publication Detail:
Type:  Journal Article     Date:  2013-01-14
Journal Detail:
Title:  Philosophical transactions. Series A, Mathematical, physical, and engineering sciences     Volume:  371     ISSN:  1364-503X     ISO Abbreviation:  Philos Trans A Math Phys Eng Sci     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-01-15     Completed Date:  2013-02-21     Revised Date:  2013-04-24    
Medline Journal Info:
Nlm Unique ID:  101133385     Medline TA:  Philos Trans A Math Phys Eng Sci     Country:  England    
Other Details:
Languages:  eng     Pagination:  20120299     Citation Subset:  -    
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbine...
Next Document:  A large-eddy simulation study of wake propagation and power production in an array of tidal-current ...