Document Detail

Beta glucan: health benefits in obesity and metabolic syndrome.
Jump to Full Text
MedLine Citation:
PMID:  22187640     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Despite the lack of international agreement regarding the definition and classification of fiber, there is established evidence on the role of dietary fibers in obesity and metabolic syndrome. Beta glucan (β-glucan) is a soluble fiber readily available from oat and barley grains that has been gaining interest due to its multiple functional and bioactive properties. Its beneficial role in insulin resistance, dyslipidemia, hypertension, and obesity is being continuously documented. The fermentability of β-glucans and their ability to form highly viscous solutions in the human gut may constitute the basis of their health benefits. Consequently, the applicability of β-glucan as a food ingredient is being widely considered with the dual purposes of increasing the fiber content of food products and enhancing their health properties. Therefore, this paper explores the role of β-glucans in the prevention and treatment of characteristics of the metabolic syndrome, their underlying mechanisms of action, and their potential in food applications.
Authors:
D El Khoury; C Cuda; B L Luhovyy; G H Anderson
Publication Detail:
Type:  Journal Article     Date:  2011-12-11
Journal Detail:
Title:  Journal of nutrition and metabolism     Volume:  2012     ISSN:  2090-0732     ISO Abbreviation:  J Nutr Metab     Publication Date:  2012  
Date Detail:
Created Date:  2011-12-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101526296     Medline TA:  J Nutr Metab     Country:  United States    
Other Details:
Languages:  eng     Pagination:  851362     Citation Subset:  -    
Affiliation:
Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Nutr Metab
Journal ID (publisher-id): JNUME
ISSN: 2090-0724
ISSN: 2090-0732
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 D. El Khoury et al.
open-access:
Received Day: 9 Month: 6 Year: 2011
Accepted Day: 27 Month: 10 Year: 2011
Print publication date: Year: 2012
Electronic publication date: Day: 11 Month: 12 Year: 2011
Volume: 2012E-location ID: 851362
ID: 3236515
PubMed Id: 22187640
DOI: 10.1155/2012/851362

Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome
D. El KhouryI1
C. CudaI1
B. L. LuhovyyI1
G. H. AndersonI1*
Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
Correspondence: *G. H. Anderson: harvey.anderson@utoronto.ca
[other] Academic Editor: Frank Thies

1. Introduction

Obesity has reached global epidemic proportions with more than one billion adults affected by this chronic disorder [1]. Coronary artery disease, stroke, insulin resistance, type 2 diabetes, hypertension, and metabolic syndrome are well-known medical comorbidities associated with excess body weight [2]. The metabolic syndrome is defined by a combination of three or more of the following: (a) abdominal circumference >102 cm (40′′) for men and 88 cm (35′′) for women, (b) hypertension, (c) hyperglycemia, and (d) dyslipidemia (elevated triacylglyceride concentrations and low levels of high-density lipoproteins (HDL) in blood) [3]. It is directly associated with increased risk of type 2 diabetes and cardiovascular diseases.

Many studies have examined the potential of diets and dietary components as a first-line intervention in the prevention and treatment of metabolic syndrome [4]. Accordingly, various dietary constituents, foods, and dietary practices, capable of controlling blood glucose, insulin and lipids, blood pressure, and food intake have been identified. Although the ideal dietary pattern for patients with metabolic syndrome has not been defined, there is growing evidence that high intakes of fruits, vegetables, legumes, and cereals are beneficial [511]. Many of their benefits have been attributed to their low-glycemic properties and their dietary fiber content. However, dietary fibers in fruits, vegetables, legumes, and cereals are poorly defined and vary greatly in characteristics.

The focus of this review is on beta glucan (β-glucan), which is a dietary fiber readily found in oat and barley bran. β-glucan is a relatively inexpensive milling byproduct, and it is added to foods on the assumption that this will contribute to health benefits. β-glucans are predominantly found in the internal aleurone and subaleurone cell walls [1214]. The content of β-glucan varies with environmental conditions during endosperm development and is regulated by (1 → 3,1 → 4)-β-glucan endohydrolase (EC 3.2.1.73 also known as licheninase or 1,3-1,4-beta glucanase) to facilitate endosperm cell-wall degradation during germination [15]. Among cereals, the highest content (g per 100 g dry weight) of β-glucan has been reported for barley: 2–20 g (65% is water-soluble fraction) and for oats: 3–8 g (82% is water-soluble fraction). Other cereals also contain β-glucan but in much lower amounts: sorghum 1.1–6.2 g, rye 1.3–2.7 g, maize 0.8–1.7 g, triticale 0.3–1.2 g, wheat 0.5–1.0 g, durum wheat 0.5-0.6 g, and rice 0.13 g [16]. Other sources of β-glucan include some types of seaweed [17] and various species of mushrooms such as Reishi, Shiitake, and Maitake [18].

Canada is a major producer of both oats and barley, producing 2297.6 and 7605.3 thousand metric tonnes of oats and barley, respectively, in 2010/2011 [19, 20]. In 2007, Canada was the 5th leading producer of barley and the 2nd leading producer of oats worldwide [21]. Fractions rich in β-glucans are readily obtained from cereal grains by dry milling followed by sieving and air classification processes or by wet milling followed by sieving and solvent extractions [22]. These approaches result in concentrates or isolates containing 8–30% and 95% β-glucans, respectively. During oat processing, oat bran and aleurone layers can be milled from oat groat, creating the bran as a major byproduct. Oat β-glucan is found in greater concentrations in the bran as compared to the whole-oat groat and commercial oat bran contains 7–10% β-glucan [23]. However, extraction of pure β-glucan isolates is not straightforward and relatively costly since the aleurone and subaleurone cell walls also enclose starch, protein, and lipids [24]. Thus, pure β-glucan isolates are often ignored in food product development and relatively inexpensive oat and barley bran or flour fractions are typically used.

The objective of the current review is to illustrate the role of β-glucan, as a soluble and fermentable fiber, in the prevention and treatment of various metabolic syndrome-linked diseases. β-glucan is then compared to other soluble and fermentable dietary fibers, clarifying whether the effects of β-glucan on health and disease are unique. An overview of definitions and types of fiber is provided first and then followed by an in-depth examination of the health benefits associated with β-glucan, its mechanisms of action, and its potential food applications.


2. Dietary Fibers: Characteristics, Definitions, Classifications, and Analytical Methods

Scientific and regulatory bodies around the world define fiber differently. The challenge of defining fiber is probably best exemplified by the 10-year process that was required to achieve an international legal definition for dietary fiber by Codex [25]. Most definitions of fiber address its biological, chemical, and nutritional characteristics while recent regulatory requirements have created the need for analytical definitions. Fibers can also be categorized based on their physical and chemical properties as well as their physiological effects. The following sections outline some characteristics of fiber, its various definitions and classifications as well as the analytical approaches used for its quantification. Prior to an in-depth examination of β-glucan, a brief overview describing the role of dietary fibers in metabolic syndrome will be given.

2.1. Characteristics of Dietary Fibers

Four categories of fiber definitions have been identified [26], each of which addresses a different characteristic of fiber. In general, these categories describe fiber based on its source, chemical composition, digestibility, metabolic fate, and physiological effects. Depending on which characteristic is used to define fiber, various carbohydrates can be included under the definition. Each category of definitions has its advantages and disadvantages and because of the variation in fiber types, a combination of different approaches is usually necessary in order to define fiber in a comprehensive manner.

Biological definitions describe the origins of fiber and have historically referred to nonstarch polysaccharides from plant cell walls. The earliest formal definition of fiber refers to the source of fiber: “Dietary fibre is the proportion of food which is derived from the cellular walls of plants, which is digested very poorly in human beings” [27]. This definition was soon updated to include nondigestible polysaccharides that are not part of the plant cell wall [28], in order to account for storage carbohydrates such as guar gum. However, this definition remains limiting as fibers can also be obtained from animal, fungal, bacterial, and synthetic sources. Categorization based on source is also complicated by the inability of analytical methods to distinguish fiber origin [29].

Chemically, fiber can be described based on its chain length and type of linkages between each monomeric unit. This provides a very precise and unequivocal meaning; however, deciding on the appropriate chain length for fiber has been difficult. The Codex definition for fiber indicates that fibers have a degree of polymerization (DP) ≥ 10, but also includes a footnote that the decision on whether to include carbohydrates with a DP > 2 (i.e., oligosaccharides) is up to national authorities [30]. Fibers can also be described based on the chemical bonds between their monomeric units as nonstarch polysaccharides are typically linked by β-linkages; however, this specification would exclude resistant starches, which contain α-1,4 linkages.

The physiological effects of fiber refer to its nondigestibility and metabolic effects. Nondigestibility in the small intestine is fundamental to fiber and was part of the first definition put forth by Trowell [27]. However, nondigestibility and a lack of absorption by the small intestine alone do not guarantee favourable physiological effects. Depending on physicochemical properties, fibers have a range of physiological consequences including viscosity in the upper gastrointestinal tract [31, 32], fermentation in the colon [33], and prebiotic effects [34, 35]. These effects in the gastrointestinal tract improve laxation and increase stool bulking and also have metabolic consequences including improvements in serum lipids and postprandial glycemia and promotion of satiety.

Analytical definitions are used for labelling and inspection purposes. They often describe an “official method,” which is simple and reproducible enough to minimize dispute. The risk with these types of definitions is that they are not able to recognize new fiber compounds, which may have significant and beneficial health implications. Consequentially, the “official method” has to be continually updated to measure these new compounds. This type of definition is very practical from a regulatory point of view; however, it alone does not actually describe any characteristics of fiber and an analytical method should only be part of a formal regulatory definition.

2.2. Definitions of Dietary Fibers

The most recent definitions for fiber generally address at least one of four characteristics: (1) source, (2) chemical characteristics, (3) resistance to digestion, and (4) beneficial biological effects. With the advances of food science, isolation, modification, and synthesis of many fibers are possible, which have resulted in some jurisdictions distinguishing between naturally occurring fibers from plant source and isolated or synthesized fibers. Others have chosen not to adopt this division by either considering all nondigestible carbohydrates as fiber or only those carbohydrates that are intrinsic and intact in plants. Table 1 lists examples of such definitions based on this division.

2.3. Classification of Dietary Fibers

As seen in the previous section, fibers are often classified by their source (plant, animal, isolated, synthetic, etc.), but they can also be classified according to chemical, physical, or physiological criteria [36, 37].

2.3.1. Chemical (Polymer Length and Types of Linkages)

Chemical classification can divide carbohydrates based on their chain length, or DP: sugars (DP 1-2), oligosaccharides (DP 3–9), and polysaccharides (DP ≥ 10). Oligosaccharides are either (a) maltodextrins (α-glucans), principally resulting from the hydrolysis of starch, or (b) non-α-glucan such as raffinose and stachyose, fructo- and galactooligosaccharides and other oligosaccharides. Polysaccharides may be divided into starch (α-1,4 and 1,6 glucans) and nonstarch polysaccharides, which primarily consist of plant cell wall polysaccharides such as cellulose, hemicelluloses, and pectin but also includes plant gums, mucilages, and hydrocolloids. However, some carbohydrates do not fit into this categorization. For instance, inulin may have from 2 to 200 fructose units and thus can be both oligo- and polysaccharide [35].

2.3.2. Physical (Solubility and Viscosity)

Fibers are most commonly characterized based on their solubility. Distinction between soluble and insoluble dietary fibers is based on the solubility characteristics of dietary fiber in hot aqueous buffer solutions [38]. Solubility of dietary fiber structure cannot be simply described as the solubility in water. Solubility of dietary fibers is rather defined as dissolved or liquefied in a buffer and enzyme solution modeled after, but not necessarily identical to, the aqueous enzyme solutions or slurries present in the human system [39]. Insoluble fibers primarily consist of cellulose and some hemicelluloses, resistant starch, and chitin while soluble fibers include pectins, β-glucans, galactomannan gums, mucilages, and some hemicelluloses. Solubility can be used as a means to broadly characterize the physiological effects of fibers. In general, insoluble fibers increase fecal bulk and the excretion of bile acids and decrease intestinal transit time (i.e., laxative effect). Soluble fibers increase total transit time by delaying gastric emptying and also slow glucose absorption [40]. Although this characterization of fiber is used to generalize the effects of each fiber type, only soluble viscous fibers delay gastric emptying time and slow glucose absorption while nonviscous soluble fibers primarily act as a substrate for microbial fermentation in the colon [33].

2.3.3. Physiological (Rate of Digestion and Fermentation)

The rate at which a carbohydrate is digested is determined by a number of factors, including the rate at which carbohydrate leaves the stomach and becomes available for absorption as well as diffusion of released sugars occurs from food bolus [41]. Thus, the rate at which carbohydrates leave the food matrix and the ability for amylase to act on the carbohydrate is an important determinant of glucose absorption rate and resulting blood glucose levels. Based on digestion, carbohydrates can be categorized as rapidly or slowly digested or even resistant. Resistant carbohydrates include plant cell wall polysaccharides, gums, fructans, resistant maltodextrins, and resistant starches.

These carbohydrates that resist digestion make their way to the large intestine, where they may be fermented by the gut microflora [33] or have prebiotic effects [34]. However, not all fiber is fermented. Short-chained fatty acids produced from fermentation are mainly sourced from resistant starches [42, 43]. Insoluble fibers (e.g., lignins, cellulose, and some hemicelluloses) are resistant to fermentation while soluble fibers (e.g., pectins, gums, mucilages, and some hemicelluloses) are more completely fermented by colonic microflora [33]. A prebiotic is a nondigestible food ingredient that selectively stimulates the growth and/or activity of a limited number of colonic bacteria and subsequently improves host health [44]. Prebiotic fibers alter the balance of the gut microflora towards what is considered to be a healthier one [34] and includes fructans and resistant starches [45].

2.4. Analytical Methods for Fiber Quantification

For food labelling purposes, it is important that analytical methods complement the fiber definition in a given jurisdiction. Fibers are typically measured by enzymatic-gravimetric methods, although there are also gravimetric, nonenzymatic-gravimetric, and enzymatic chemical methods. High-performance liquid chromatography (HPLC), gas liquid chromatography (GLC), and ion-exchange chromatography are also used [29]. Fibers recovered with enzymatic-gravimetric methods include cellulose, hemicelluloses, pectins, some other nonstarch polysaccharides, lignin and some resistant starch. Soluble and insoluble fibers can also be measured separately by this method [46]. However, these methods do not capture inulin and polydextrose and partially measure resistant starch. To remedy this, separate procedures have been proposed to quantify these other compounds. For instance, β-glucans can be measured by AOAC method 995.16, AAC method 32-23, and a method by McCleary and Codd [47]. Resistant starch, oligofructan, inulin, fructo-oligosaccharides, and polydextrose can also be measured independently by several methods [29].

However, these methods incompletely measure all fibers included in the Codex definition, and the use of some or all of these methods could result in underestimation of some fibers as well as overestimation of others due to double counting. The McCleary method [48] (AOAC 2009.01) was proposed to accompany the Codex definition as it allows for measurement of a complete range of dietary fiber components, including nondigestible oligosaccharides and resistant starches, in one test, without double counting or missing fiber compounds [48]. This method uses extended enzymatic digestion at 37°C, followed by gravimetric isolation and quantitation of high-molecular weight dietary fiber and liquid chromatography to quantitate low-molecular weight dietary fibers [49]. It is also particularly important for food labelling that fiber analysis be completed on foods as they would be eaten in order to provide more accurate fiber values that account for the effects of processing and cooking procedures [49].

For analysis of β-glucan, two AOAC methods have been adopted in oats, barley, and their products. Both methods are enzymatic colorimetric methods that use lichenase to cleave 1,3 β-bonds in β-glucan to produce oligosaccharides of various lengths that are subsequently hydrolyzed to glucose with amyloglucosidase, and then the glucose is assayed colorimetrically [39]. The AOAC method 992.28 is applicable to measure 1–12% β-glucans in oat and barley fractions, unsweetened oat cereals, and ready-to-eat cereals [50]. The AOAC method 995.16 is used to analyze β-glucan content in flours from whole grains, milling fractions, and unsweetened cereal products [47]. In addition to AOAC methods, there are other methods including enzyme-linked immunosorbent assay (ELISA) [51], near-infrared spectroscopy [52], and fluorescence assay of complex formed between β-glucan and calcofluor [53], which are all specifically designed to measure β-glucan.

2.5. Dietary Fibers in the Prevention and Treatment of Metabolic Syndrome

Dietary fibers have been strongly implicated in the prevention and treatment of various characteristics of the metabolic syndrome. The beneficial effect of fiber-rich foods and isolated fibers, both insoluble and soluble, on obesity, cardiovascular diseases, and type 2 diabetes has been shown in randomized studies [6, 11]. Diets rich in fiber improve glycemic control in type 2 diabetes [54], reduce low-density lipoprotein (LDL) cholesterol in hypercholesterolemia [5557], and contribute positively to long-term weight management [58]. In epidemiological studies, positive associations were noted between increased cereal consumption, a source of both insoluble and soluble fibers, and reduced risk of metabolic syndrome, cardiovascular diseases, and markers of systemic inflammation [5961]. Diets rich in whole-grain foods have also been negatively associated with metabolic syndrome [6, 8, 11].

In comparison to insoluble fibers, soluble fibers are more potent in attenuating the presence of components of the metabolic syndrome in both animals and humans. Addition of α-cyclodextrin, a soluble dietary fiber, to high-fat-diet-fed male Wistar rats for 6 weeks attenuated weight gain and increases in plasma cholesterol and triglyceride levels while also preventing increased fecal fat content relatively to the control high fat diet [62]. Serum leptin levels were normalized and insulin sensitivity index was improved. A diet supplemented with the soluble fibers from Plantago Ovata husks (psyllium) and methylcellulose over 10 weeks improved obesity and lipid profile and ameliorated the unbalanced secretions of the inflammatory tumor necrosis factor-α (TNF-α) and adiponectin by the visceral adipose tissue in obese Zucker rats [63]. The diet supplemented with the soluble fermentable fiber Plantago Ovata husks also resulted in the greatest improvement in hyperinsulinemia and hyperleptinemia, and lowered the production and accumulation of lipids in the liver. This effect was associated with activation of the AMP-activated protein kinase (AMPK) system [63], known to increase fatty acid oxidation and decrease fatty acid synthesis [64]. In humans, a daily intake of at least 5 g of soluble fiber, particularly from whole-grain foods and fruits, reduced the presence of metabolic syndrome in patients with type 2 diabetes by 54% [65]. Moreover, a high fiber meal, in which refined-wheat flour was replaced with whole-wheat flour (16.8 g/meal), increased postprandial adiponectin concentrations in diabetic females [66]. In a cross-sectional study on diabetic men, adiponectin levels were 19% higher in the highest quintile of cereal fiber intake than in the lowest quintile [67]. High adiponectin levels are associated with improved glycemic control and insulin sensitivity, a more favorable lipid profile and reduced inflammation in diabetic females [68].

Among soluble fibers, β-glucan is the most frequently consumed and is associated with reduced presence of insulin resistance, dyslipidemia, hypertension, and obesity. The role of β-glucan in the prevention and treatment of these determinants is discussed in the following sections.


3. Beta Glucan, Obesity, and Metabolic Syndrome

Increased interest in β-glucan in the last two decades arises from its functional and bioactive properties. Of all fibers, its health benefits have been the most extensively documented, and the use of health claims with β-glucan-containing foods has been allowed in several countries including Canada, the United States of American, Sweden, Finland, and the United Kingdom [69]. Moreover, no human adverse effects have been reported following the consumption of a diet rich in β-glucan from oat or barley flour or their extracts [70].

3.1. Definition of Beta Glucan

Glucans are glucose polymers, classified according to their interchain linkage as being either α- or β-linked [71]. β-glucans are a heterogeneous group of nonstarch polysaccharides, consisting of D-glucose monomers linked by β-glycosidic bonds [72]. The macromolecular structure of β-glucan depends on both the source and method of isolation. The simplest glucan is the linear and unbranched β-(1,3)-D-glucan, found among prokaryotes and eukaryotes [73]. Another simple structural type occurs mostly in the nonlignified cell walls of cereal grains, and consist of linear β-(1,3;1,4)-D-glucans [74]. Glucans from barley, oats, or wheat are found in cell walls of the endosperm, while being concentrated in the aleurone layer of barley, oats, wheat, sorghum, and other cereals. Branched structures of β-glucans consist of β-(1,3)- or β-(1,4)-glucan backbone with either (1,2)- or (1,6)-linked β-glucopyranosyl side branches [71]. They are major structural components of the cell walls of yeast, fungi, and some bacteria [75]. The side branched β-(1,3;1,2)-D-glucan is only present in the type 37 capsule of the bacterium Streptococcus pneumonia [73]. Branched β-(1,4;1,6)-D-glucan and β-(1,3;1,6)-D-glucan are found in different groups of yeast, fungi, and algae [71]. In algae, β-glucans are present as storage polysaccharides or cell wall components. Some cyclic (1,2) and (1,3;1,6) β-glucans were also isolated from various bacteria. These glucans are important for plant-microbe interactions, and act as signalling molecules during plant infection [76]. Besides differences in type of linkage and branching, β-glucans can vary in terms of frequency and length of branching, degree of branching, molecular weight (from 102 to 106 daltons), polymer charge, and/or solution conformation (random coil or triple or single helix) as well as solubility [77]. All these factors play a role in shaping β-glucan-associated biological activities, and should be taken into consideration by researchers when discussing the physiological impacts of β-glucans.

The β linkages in the polymer render β-glucan nondigestible [78]. Moreover, β glucans are highly fermentable in the caecum and colon [79]. In comparison to other oat fractions, β-glucan induced the maximum growth rate and cell proliferation rate of bacteria isolated from human intestine and the maximum lactic acid productions [80]. The solubility of β-glucans is highly influenced by their structures [81]. However, no sharp distinction exists between the insoluble and soluble fractions and the ratio is highly dependent on the extraction conditions of the soluble fiber [82]. The (1 → 3)-β-glucans with a high degree of polymerization (DP > 100) are completely insoluble in water [83]. This conformation allows for stronger interactions and associations between chains than between the chains and water molecules. Solubility increases as the degree of polymerization is lowered. The composition of the side substituted branches and the frequency of these branches also determine the solubility of β-glucan molecules [84]. A single (1 → 6)-β linked glucose side can transform the glucan into a more soluble form in comparison to its unbranched molecule [85]. Most studies have examined the structure and properties of water-soluble β-glucans, in contrast to water-insoluble ones [86, 87].

Depending on physicochemical characteristics, various biological functions of β-glucans have been described. This review elaborates on the role of β-glucans in the prevention and treatment of the metabolic syndrome; however, a description of the immunomodulatory functions of β-glucans will be briefly examined in the following section.

3.2. Beta Glucan and Immunomodulation

Among polysaccharides that act as immunostimulants, β-glucans were found to be the most effective against infectious diseases and cancer [88]. The immunological potency of β-glucans varies with the molecular mass, solution conformation, backbone structure, degree of branching as well as the cell type that is targeted [89].

The role of 1,3 β-glucans from yeast, fungi, mushrooms, and seaweed as biological immunomodulators has been well documented in the past 40 years [90]. In vitro, animal and human studies have shown that 1,3 β-glucans can enhance the responsiveness and function of immune cells, stimulating both humoral and cellular immunity [91]. In vitro studies demonstrated that β-glucans can enhance the functional activity of macrophages and activate the anti-microbial activity of mononuclear cells and neutrophils [72, 92]. In vivo studies of a variety of β-glucans on the responses to pathogen infections in animals have observed increased microbial clearance and reduced mortality in lethally infected animals when exposed to β-glucans [93, 94]. Very few human studies examined the immune function of β-glucans. Three clinical studies demonstrated that pretreatment of high-risk surgical patients with intravenous yeast β-(1,3; 1,6)-D-glucan decreased the infection incidence, shortened intensive care unit length stay, and improved survival in comparison to a saline placebo injection [9597].

3.3. Beta Glucan and Parameters of the Metabolic Syndrome

There is growing interest in the understanding of the association between β-glucans and determinants of the metabolic syndrome. Most studies have used plant β-glucans as functional viscous dietary fibers in the management of various components of the metabolic syndrome. Only two studies described a protective role of nonplant β-glucans in metabolic syndrome. In obese hypercholesterolemic men, consumption of 12 g of yeast β-(1,3;1,6)-D-glucan over 8 weeks lowered total cholesterol concentrations, and increased HDL-cholesterol levels only 4 weeks after discontinuation of glucan intake [98]. One study completed in mice found that effects of chronic consumption of chitin-glucan from a fungal source improved metabolic abnormalities induced by a high fat diet [99]. Chitin-glucan is a cell wall polysaccharide-based three-dimensional network in which the central core contains branched chitin-β-1,3 glucan. In this particular study, chitin-glucan decreased high fat diet-induced body weight gain, fat mass development, fasting hyperglycemia, glucose intolerance, hepatic triglyceride accumulation, and hypercholesterolemia, irrespective of caloric intake. These beneficial effects were mainly attributed to restoration of the composition and/or activity of gut bacteria.

The ability of plant β-glucans, which will be referred to as “β-glucans” in the following sections, to form highly viscous solutions in the human gut is thought to be the basis of its health benefits. These benefits include lowering postprandial glucose and insulin responses, decreasing cholesterol levels, and potentiating the feelings of satiety. Beta glucan has the ability to form highly viscous solutions because it is a linear, unbranched, nonstarchy polysaccharide composed of β (1–4) and β (1–3)-linked glucose molecules [100]. However, the viscosity of β-glucan depends on the molecular weight, solubility, and concentration [100102]. For instance, high molecular weight β-glucans produce a higher viscosity than β-glucans with low molecular weights. Whether the ability to form highly viscous solutions at low concentrations provides β-glucan with unique health benefits in comparison to other soluble and fermentable dietary fibers has received little investigation. The role of β-glucan compared to other soluble fibers in affecting the components of the metabolic syndrome will be discussed in the following sections.

3.3.1. Beta Glucan and Insulin Resistance

Insulin resistance, whether or not accompanied with hyperglycemia, and type 2 diabetes are well-established components of metabolic syndrome [103].

Several soluble fibers, including β-glucan, psyllium and guar gum, reduce postprandial glucose and insulin responses, and improve insulin sensitivity both in diabetic and nondiabetic individuals [104110]. In healthy individuals, a beverage containing 25 g/200 mL each of resistant dextrins or soluble corn fiber, a class of soluble fibers isolated from wheat or corn, attenuated postprandial glycemic, and insulinemic responses relatively to a control glucose solution (25 g glucose/200 mL of the test beverage) [111]. Arabinoxylan consumption, at 15 g/day over 6 weeks, significantly lowered the postprandial responses of serum glucose and insulin to a liquid meal challenge test in overweight subjects with impaired glucose tolerance [112]. In stroke-prone spontaneously hypertensive rats, psyllium supplementation (5%) prevented insulin resistance in response to a high-caloric diet given from 5 to 9 weeks of age [113].

Beta glucan also contributes to glycemic control. Several factors were found to influence such an interaction, including dose, food form, and molecular weight. Dose of β-glucan is important in the regulation of the effects of this fiber on glycemic responses. Relative to other fibers, smaller amounts of β-glucan are required to bring about reductions in postprandial glucose and insulin responses in healthy subjects [114, 115], type 2 diabetic patients [116, 117] and moderately hypercholesterolemic men and women [118]. In subjects with noninsulin-dependent diabetes mellitus, consumption of three breakfasts with 4, 6, and 8.6 g of oat β-glucan in a breakfast cereal significantly decreased the peak and average increases in glucose and insulin as compared to the control [116]. A significant relationship between the amount of β-glucan in cereals and plasma glucose peak or area under the glucose curve was also observed. Similarly, a linear dose-dependent decrease in glycemic responses was noted in response to breads containing varied doses of barley β-glucan ranging from 0.1% to 6.3% [119]. Consumption of oat bran providing 7.3 g  β-glucan in a breakfast cereal or 6.2 g in a bar lowered postprandial glucose responses more than an oat bran breakfast cereal providing 3.7 g β-glucan in type 2 diabetic subjects [120]. The consumption of oat bran flour containing 9.4 g of β-glucan lowered postprandial glycemia in type 2 diabetic patients in comparison to a glucose load [117]. In addition, oat bran crisps containing 3 g of β-glucan also reduced postprandial glycemia, although the reduction was only half as large as the effect induced by oat bran flour containing 9.4 g β-glucan. In hypercholesterolemic individuals, the addition of 5 g of oat β-glucan per day to a beverage consumed for 5 weeks attenuated both glucose and insulin responses compared to the control beverage [121]. However, in healthy individuals, larger doses of β-glucan are needed in order to alter their glycemic homeostasis. Unlike diabetic subjects [117], a 3 g oat β-glucan dose did not affect postprandial glycemic response in healthy subjects [122] while the intake of muesli with 4 g oat β-glucan lowered postprandial blood glucose responses in comparison to a reference meal without muesli and β-glucan in healthy individuals [122, 123].

Food form has also an influence on β-glucan's regulation of glycemia. Incorporating a high dose of oat bran β-glucan (5.2 g) into fettucini did not significantly lower postprandial blood glucose relative to the fettucini alone in healthy subjects [124]. This is perhaps because wheat pasta itself has a low glycemic response. Molecular weight is another determinant of viscosity in addition to the concentration [101], and modulates the influence of β-glucan on glycemia. A drink containing 5 g of oat β-glucan with a molecular weight 70 000 Da significantly lowered postprandial glucose and insulin levels relative to a rice drink control, while a similar drink containing barley β-glucan of molecular weight 40 000 Da had no effect [121].

Reduced insulin responses have consistently been observed following the ingestion of β-glucan [122, 125127]. As in the case of glycemia, dose is an important factor in shaping insulin responses to β-glucan. A consistent decrease in insulin secretions was dose-dependently observed in overweight individuals in response to oat β-glucan, with significant changes reported at a dose of at least 3.8 g of β-glucan [127]. Some studies have found the impact of β-glucan on insulinemia to be independent of its glycemic effect. In healthy men, barley-enriched pasta, containing 5 g of β-glucan, induced a significant reduction in insulinemia in comparison to the control pasta without any apparent effect on glycemia [128]. Similarly, in healthy subjects, the ingestion of 50 g rye bread, containing 5.4 g of β-glucan, reduced postprandial insulinemic responses without a parallel reduction in glucose responses as compared with the control bread [109]. It was hypothesized that the low glycemic indices of pasta and rye bread may attenuate the effects of β-glucan on glucose responses.

Several mechanisms have been suggested to explain the glucose- and insulin-lowering effects of soluble fibers, more precisely β-glucan. One of the mechanisms includes the ability of soluble fibers to form viscous solutions. Delayed gastric emptying occurs with increased digesta viscosity [129131], slowing subsequent digestion and absorption [132]. High digesta viscosity decreases enzyme diffusion [133] and stimulates the formation of the unstirred water layer [134], decreasing glucose transport to enterocytes [31]. Reducing the viscosity of guar gum following acid hydrolysis resulted in concurrent loss of its clinical efficacy [31]. A relationship was noted between guar gum viscosity and its glycemic response. Moreover, it was stated that the viscosity of β-glucan could account for 79–96% of the changes in glucose and insulin responses to 50 g glucose in a drink model [135].

Evidence for delayed stomach emptying following the consumption of β-glucan emerged from human and animal studies. The quantity of exogenous glucose appearing in plasma was 18% lower, during the first 120 min, following the polenta meal with 5 g oat β-glucan in comparison to the control polenta meal in overweight individuals [136]. Similarly, the addition of 13C-labelled glucose to a meal containing 8.9 g β-glucan, consumed over 3 days, lowered the appearance of exogenous 13C-glucose in plasma by 21% relatively to a control meal without β-glucan [137].

Short-chain fatty acids resulting from the anaerobic bacterial fermentation of soluble dietary fibers such as β-glucan in the colon [138] offer another explanatory mechanism for the protective effects of soluble fibers on glucose and insulin homeostasis. The short-chain fatty acids propionic and butyric acid increased muscle expression of the insulin-responsive glucose transporter type 4 (GLUT-4) via the peroxisome proliferator-activated receptor (PPAR) γ [113]. The activation of PPARγ also increased GLUT-4 content in adipocytes [139]. Stroke-prone spontaneously hypertensive rats consuming psyllium supplementation, at 5% in a high caloric diet, witnessed improved muscle insulin sensitivity via short-chain fatty acid-induced increased membrane GLUT-4 expression in comparison to cellulose supplementation [113].

In conclusion, due to its viscosity and fermentability, β-glucan plays a significant protective role against insulin resistance in various populations.

3.3.2. Beta Glucan and Dyslipidemia

Individuals with metabolic syndrome often present with atherogenic dyslipidemia, characterized by elevated concentrations of triacylglycerols and low levels of HDL cholesterol in blood [3]. This lipid profile presents an individual with a high risk for cardiovascular disease.

Soluble fibers have the most reported beneficial effects on cholesterol metabolism. In a meta-analysis, soluble fibers pectin, psyllium, oat bran, and guar gum were all proven to be equally effective in reducing plasma total and LDL cholesterol levels [55]. When included within a low saturated fat and cholesterol diet, soluble fibers lowered LDL cholesterol concentrations by 5–10% in hypercholesterolemic and diabetic patients [55, 108]. The consumption of 14 g per day of Plantago Ovata husk for 8 weeks induced a significant reduction in total cholesterol, LDL cholesterol, and oxidized LDL in mild-moderate hypercholesterolemic patients [140]. Conversely, soluble fibers from barley, oats, psyllium, and pectin had no effect on HDL cholesterol levels [55, 141].

Variable effects of soluble fibers on triglyceridemia have been noted. In two meta-analyses, soluble fibers, including barley, oats, psyllium, and pectin, had no significant impacts on triglyceride concentrations [141]. Other studies have described hypotriglyceridemic effects of soluble fibers in various populations. In a study on type 2 diabetic patients, the intake of a high-soluble fiber diet (25 g/day) over a period of 6 weeks lowered triglyceride concentrations by 10.2% [142]. The soluble fiber in Plantago Ovata husk reduced triglyceridemia in human secondary cardiovascular disease risk trials, when consumed at 10.5 g/day over 8 weeks [143]. Similarly, the consumption of arabinoxylan at 15 g/day over 6 weeks significantly reduced postprandial triglyceride responses in overweight subjects with impaired glucose tolerance [112]. Discrepancies in findings could be attributed to the variability in fiber structure, the degree of solubility and viscosity, different administered doses, the duration of administration, and baseline triglyceride levels of the subjects.

The effect of β-glucan on lipid parameters has been intensively investigated; however, differing results have been found. These inconsistencies in findings may be explained by several factors including the sources, dose and molecular size of β-glucans, dietary composition, food preparation, food state (solid versus liquid), subject's baseline cholesterol concentrations, and study design [144] as well as the cultivar of barley and oat being used and their growing conditions [145, 146]. Although varied effects of barley and oat-derived β-glucans have been reported on lipid homeostasis, they were not established as significant differences since β-glucan content of these two cereals is almost comparable [147, 148]. In the following sections, the impacts of barley and oat β-glucans on lipid parameters will be separately discussed.

A limited effect of barley β-glucan on lipid parameters has been described and the dose of barley β-glucan appears to be a major determinant of this effect. In a meta-analysis of randomized clinical trials, the consumption of 3 to 10 g of barley β-glucan per day, over 4 to 6 weeks, significantly lowered total and LDL cholesterol in subjects with different dietary backgrounds [141]. In another meta-analysis of 8 randomized controlled trials, participants receiving 3 to 10 g of barley β-glucan per day, over a duration ranging between 4 and 12 weeks, had significant reductions in total cholesterol, LDL cholesterol, and triglycerides in comparison to control group participants, irrespective of whether a low-fat or a Step I diet was given [144]. Moreover, the consumption of pearl barley, providing 7 g of β-glucan per day over 12 weeks, significantly reduced serum concentrations of total cholesterol and LDL cholesterol in hypercholesterolemic Japanese men [149]. Both total and LDL cholesterol concentrations were significantly reduced following the consumption of the high barley β-glucan diet (6 g/day), in comparison with the diet low in barley β-glucan (0–0.4 g/day) in hypercholesterolemic subjects [150, 151]. In contrast, daily ingestion of 10 g of barley β-glucan over 4 weeks in the form of bread, cakes, muffins or savory dishes, had no effect on serum lipoprotein profile in hypercholesterolemic men in comparison with the control group [152]. In addition, neither 5 g nor 10 g of barley β-glucan consumed daily in a beverage over 5 weeks had a significant impact on serum lipids in hypercholesterolemic subjects as compared with control [121]. Thus, in addition to dose, the food vehicle delivering barley β-glucan also affects its regulation of lipid responses.

Despite conflicting results, oat β-glucans were found to be strongly effective in modulating plasma lipid parameters. As in the case of barley β-glucan, the ingested dose of oat β-glucan appears as a limiting factor. The US Food and Drug Administration and Health Canada have accepted 3 g as an effective daily intake of oat β-glucan to reduce serum LDL cholesterol [74, 153]. In a meta-analysis on oats containing 2 to 10 g per day of β-glucan, a net change of −3.1 mg/dL to −15.5 mg/dL for total cholesterol and of −2.9 mg/dL to −14.3 mg/dL for LDL cholesterol was observed [55]. A significantly greater serum cholesterol reduction was reported after the intake of 4 g of β-glucan as compared to 2 g from oat bran or oat meal incorporated into muffins, cereals, and shakes [154]. Increasing the dose to 6 g of β-glucan did not provide any further reduction in serum cholesterol concentrations. Similarly, a beverage providing 5 g of β-glucan per day from oats significantly lowered total and LDL cholesterol over a period of 5 weeks compared to a control beverage, in hypercholesterolemic individuals [121]. No additional benefit was reported on serum lipids when increasing the daily dose of oat β-glucan to 10 g. A bread containing 6 g of oat-derived β-glucan significantly improved HDL cholesterol and diminished LDL cholesterol, non-HDL cholesterol, total cholesterol/HDL cholesterol ratio, and LDL cholesterol/HDL cholesterol ratio, over 8 weeks compared to whole-wheat bread, in overweight individuals with mild hypercholesterolemia [155]. Similarly, the consumption of 6 g/day of concentrated oat β-glucan in the form of powder for 6 weeks significantly reduced both total and LDL cholesterol in hypercholesterolemic adults, with the reduction in LDL cholesterol being greater than that in the control group [156]. A once-daily consumption of 4 g of β-glucans from oats, incorporated into a ready-meal soup, reduced LDL cholesterol levels by 3.7% over 5 weeks in a group of hyperlipidemic healthy subjects as compared with a control diet [157]. In contrast, in some studies, the reductions were small and nonsignificant, around less than 5% for LDL cholesterol, in comparison to control groups [158162]. Food vehicle, rather than dose, seems to explain such minimal lipid responses to oat β-glucan ingestion in these studies. A once-daily consumption of 20 g of an oat bran concentrate (containing 3 g of oat β-glucan) in the form of cereal for 12 weeks did not affect total cholesterol and LDL cholesterol as compared to 20 g wheat bran (control) [161], nor did 4 weeks of 5.9 g of oat bran β-glucan administered daily in bread and cookies [162].

The mode of administration of β-glucan is another determinant to consider when explaining such variability in results since structural changes in β-glucan may result from food processing or storage of barley and oat products. The consumption of oat β-glucan in a variety of foods, such as muffins and cereals, effectively lowered LDL cholesterol [163], suggesting that the structure and molecular weight of oat β-glucan are maintained in these products. On the other hand, the effects of oat β-glucan administered in bread are controversial. The consumption of bread providing 140 g of rolled oats per day led to an 11% reduction in serum total cholesterol concentrations [164]. However, other studies found no hypocholesterolemic effect of incorporating oats into bread [158, 165167]. Bread making can cause significant depolymerization of β-glucan, primarily induced by β-glucanase enzymes present in wheat flour [162, 168]. The activation of these enzymes depends on the processing technique used in bread making.

The varied responses of cholesterol-rich lipoproteins to β-glucans could be also attributed to differences in molecular weight and solubility of the fibers. Molecular weight, solubility, and viscosity are important physicochemical properties of β-glucan, which are strongly affected by the genetic attributes of oat and barley grains [169]. For instance, oat β-glucans have a higher molecular weight than barley β-glucans [102, 170172]. Only 15–20% of barley β-glucans are water soluble while almost 70% of the oat β-glucans are soluble in water [173]. Relatively to barley β-glucan, the higher molecular weight of oat β-glucan is attributed to a greater content and frequency of side branches rather than to a higher degree of polymerization, explaining its higher degree of water solubility [83, 85]. As viscosity is highly influenced by the molecular weight and solubility of β-glucan, a lower molecular weight and/or solubility of β-glucan are expected to reduce its resultant viscosity and consequently its cholesterol-lowering effects. Highly water-soluble β-glucan, with moderate to high molecular weight, reduced serum LDL cholesterol better than β-glucan with low water-solubility and low molecular weight [174]. This explains the lower reported effects of barley β-glucan on lipid parameters as compared to oat β-glucan.

The hypocholesterolemic properties of β-glucans are explained by various mechanisms some of which are shared with other soluble dietary fibers. Altering bile acid excretion and the composition of bile acid pool is one of the mechanisms. Dietary fibers are associated with increased bile acid excretion and increased activity of cholesterol 7α-hydrolase, a major enzyme leading to cholesterol elimination in the body [175]. Beta glucans can decrease the reabsorption of bile acids and increase their transport towards the large intestine [176], promoting their increased microbial conversion to metabolites and their higher excretion, subsequently inducing increased hepatic synthesis of bile acids from circulating cholesterol [177]. This mechanism is strongly related to β-glucan-induced increased viscosity in the small intestine [128, 178, 179] and consequently slowed gastric emptying, digestion, and absorption [179]. In addition, some soluble fibers decrease the absorption of dietary cholesterol by altering the composition of the bile acid pool. In fact, oat bran increased the portion of total bile acid pool that was deoxycholic acid [180], a microbial byproduct of bile acid which decreases the absorption of exogenous cholesterol in humans [181].

The fermentation of some soluble fibers, including β-glucan, provides another explanation for their cholesterol-lowering effects. Fermentation changes the concentration of bile acids in the intestinal tract of rats [177] as well as the production of short-chain fatty acids, which influence lipid metabolism. For example, propionate is thought to suppress cholesterol synthesis, though results are still inconclusive [182186] and acetate may contribute to the lowering of cholesterol circulating levels [187]. It should be well noted that differences between soluble fibers in the relative production of acetate, propionate, butyrate, and total short-chain fatty acids do exist. Oat β-glucan ferments more rapidly than guar gum, reflected in higher concentrations of total short-chain fatty acids, in general, and of acetate and butyrate, in particular [32]. However, such differences may not be that important to generate varied degrees of hypocholesterolemic impacts among soluble fibers.

Few mechanisms, most not clearly elucidated, have been suggested in order to explain the hypotriglyceridemic properties of soluble fibers, including β-glucan. Two mechanisms include a possible delay in the absorption of triglycerides in the small intestine [188], as well as a reduced rate of glucose absorption [189]. Glucose-induced hypertriglyceridemia, via the process of de novo lipogenesis, is well established in the literature [190]. Furthermore, direct inhibition of lipogenesis by soluble fibers is also suggested as an explanatory mechanism. The hypotriglyceridemic effect of oligofructose was reported to result from the inhibition of hepatic lipogenesis via the modulation of fatty acid synthase activity [191, 192]. In an in vitro study, β-glucan extracts from oat and barley flour inhibited the in vitro intestinal uptake of long-chain fatty acids and cholesterol and downregulated various genes involved in lipogenesis and lipid transport in rats [147].

In conclusion, β-glucan possesses similar hypocholesterolemic properties as other soluble dietary fibers. However, the hypotriglyceridemic impacts of β-glucan have not been fully determined and warrant further investigation. Additionally, further studies need to be conducted in order to optimize β-glucan's hypolipidemic dose and to investigate the long-term effect of β-glucan supplementation on blood lipid chemistry. The eventual goal would be to combine β-glucan supplementation with other dietary means of controlling blood lipids, and to consequently prevent the need for cholesterol-lowering drugs in hyperlipidemic patients.

3.3.3. Beta Glucan and Blood Pressure

Hypertension is another core component of the metabolic syndrome, and is an established risk factor for heart diseases, stroke, and renal diseases [193].

The effects of soluble dietary fibers, including β-glucan, on arterial blood pressure have been the least studied among the components of the metabolic syndrome. In one meta-analysis, increased dietary fiber consumption provided a safe and acceptable means to reduce blood pressure in patients with hypertension [194]. In a randomized crossover study on hyperlipidemic adults, small reductions in blood pressure were reported following the intake of a high-fiber diet containing β-glucan or psyllium (8 g/day more than the unsupplemented food in the control diet) over 4 weeks [195]. In another randomized parallel-group study on hypertensive and hyperinsulinemic men and women, the oat cereal group (standardized to 5.52 g/day of β-glucan) experienced a significant reduction in systolic and diastolic blood pressure in comparison to the low-fiber cereal control group (<1 g/day of total fiber) over 6 weeks [196]. Similarly, in a randomized double-blind placebo-controlled trial on participants with untreated elevated blood pressure or stage 1 hypertension, the consumption of 8 g/day of supplemented soluble fiber from oat bran over 12 weeks significantly reduced both systolic and diastolic blood pressure in comparison to the control [197].

Various mechanisms underlying the antihypertensive effects of soluble dietary fibers have been hypothesized. Insulin resistance is a major underlying mechanism contributing to the development of hypertension [198] and soluble fibers may affect blood pressure by modulating insulin metabolism [199]. Reductions in plasma cholesterol, observed following the ingestion of soluble fibers, are also associated with improvements in endothelium-mediated vasodilation [200, 201]. Preliminary findings in animals support a direct relationship between changes in circulating cholesterol levels and blood pressure [202]. Finally, soluble fiber-induced weight loss, which will be discussed in the coming section, has also been suggested as a potential mechanism. Increased body weight is a strong risk factor for hypertension [203].

In conclusion, additional studies are still needed in order to fully elucidate the mechanisms underlying the protective effects of soluble fibers against hypertension. Moreover, the association between β-glucan and blood pressure remains to be further explored.

3.3.4. Beta Glucan, Satiety, and Obesity

Central obesity is a well-established component of the metabolic syndrome [3]. One potential countermeasure to the current obesity epidemic is to identify and recommend foods that spontaneously reduce energy intake by inducing satiation and increasing satiety.

Dietary fiber has documented effects on satiety, food intake, and body weight although the outcomes have not been consistent [204]. A number of randomized controlled trials have shown weight reduction with diets rich in dietary fiber or dietary fiber supplements [205208], while others have not [209]. However, a meta-analysis of 22 clinical trials concluded that a 12 g increase in daily fiber intake is associated with a 10% reduction in energy intake and a 1.9 kg reduction in weight during an average study duration of 3.8 months [204]. More specifically, the soluble dietary fiber glucomannan, which has a strong water-holding capacity, resulted in a significantly greater reduction of weight, when consumed at a dose of 1.24 g daily for 5 weeks in conjunction with an energy-restricted diet, as compared to the placebo energy-restricted group [210].

Despite the clear association between soluble fibers and weight loss, their effects on subjective measures of satiety are not conclusive. However, soluble fibers with viscosity-producing properties, including guar gum, pectin, psyllium, and β-glucan, are more strongly associated with reduced hunger and/or appetite perceptions than low/no fiber condition [211]. For example, the addition of 2.5 g of guar gum to a semisolid meal prevented an increase in appetite, hunger, and desire to eat in overweight male volunteers [212]. The soluble resistant dextrins promoted, in a dose-dependent manner, increased satiety when added to desserts and to carbohydrate-based meals [213215]. Moreover, a nutrition bar containing guar gum (5.7 g guar gum and 9.1 g other fibers) increased perceived fullness and decreased hunger sensations as compared to a reference bar (6.4 g dietary fiber) [216].

Barley, a source of β-glucan, possesses satiating properties when fed intact. Subjects described to be significantly less hungry before lunch after consuming barley—but not wheat—and rice-containing foods [217]. Barley-based foods enhanced as well satiety when compared to a high-glycemic index food or a food with no dietary fiber [218220]. This effect does not appear specific to one type of barley, as different cultivars of barley produced an equivalently greater satiety feeling, up to 180 min postprandially, in comparison to white wheat bread [218].

In contrast to whole barley, both positive [128, 221223] and negative [220, 224226] effects of β-glucan on satiety have been described. A beverage containing oat β-glucan, at levels of 10.5 g/400 g portion and 2.5 g and 5 g/300 g portion, increased fullness sensation in comparison to the beverage free of fiber in healthy volunteers [222, 227]. Similarly, a preload of 5.2% barley β-glucan-enriched biscuits significantly suppressed appetite ratings in healthy adolescents, without modifying subsequent food intake at lunch, as compared with control biscuits [228]. In healthy participants, a 3% barley β-glucan-enriched bread induced a higher reduction of hunger and increase in fullness and satiety as compared to the control bread. This was also associated with a significant reduction of energy intake at the subsequent lunch [223]. In contrast, a meal replacement bar containing 1.2 g of barley β-glucan (from 8.0 g barley), consumed at breakfast on 2 consecutive days by healthy subjects, did not modify appetite scores or energy intake at subsequent lunch in comparison to a control bar containing only 0.3 g β-glucan (from 6.8 g oats) [226]. Moreover, muesli containing 4 g of oat β-glucan did not induce differential satiating effects than an isocaloric portion of cornflakes in healthy individuals [123], as a dose of 2 g of β-glucan in cereal test meals did not affect satiety ratings in comparison to isocaloric glucose load in overweight participants [225].

The efficacy of β-glucan on satiety depends on several factors. Dose is one of the major determinants. A beverage (300 g) containing 5 g of oat dietary fiber (2.5 g of β-glucan) produced significantly higher ratings of satiety than the fiber-free beverage [227]. However, when the dose was raised to 10 g of oat fiber (5 g of β-glucan), no additional impact on satiety scores was reported [227]. The physical effects of β-glucans on the ingesta appear to be fundamentally important in shaping their satiating properties. This effect is largely determined by molecular size and solubility of β-glucans [229]. The molecular weight of β-glucan, a major determinant of solubility, varies from 31 to 3100 kilodaltons [230] and can change during isolation, purification, and extraction procedures [231]. Such variability in the molecular weight and solubility of β-glucan may explain its varied impacts on satiety. Finally, the carrier food also plays a role in defining the interaction of β-glucans with satiety. Almost all studies that did not report any significant influence of β-glucan on satiety used solid or semisolid foods as carrier foods, unlike studies that incorporated β-glucan into liquid meals [227]. Solid foods are known to increase satiety and decrease hunger more effectively than liquid ones [232]. Thus, the larger satiating effect of solid food per se may mask the satiating potential of β-glucans.

Since almost all studies did not account for these factors and were run under different experimental conditions (different β-glucan dose, various molecular weights and food sources of the fiber, different dosing protocols, and diverse types of subjects), ranking the satiating power of β-glucan is still not possible at this stage. Moreover, another concern to be addressed in future studies is the type of control to use. No dietary fiber that may function as a control for satiety studies has been actually identified. In almost all studies, the control food was the same food with either a lower amount or a complete absence of β-glucans.

As the effect of β-glucan on satiety is still unclear, its effect on body weight regulation is less clear. In a study on diabetic patients, the supplementation of β-glucan from oats, at a dose of 9 g/day over 24 weeks, did not have any significant effect on body weight [69, 233]. In another study on hyperlipidemic patients, weight differences were not observed following the consumption of a diet rich in oat β-glucan (8 g/day), over 1 month, as compared to the control group [195]. It should be noted that the body weight was not the primary concern of these studies as they focused on changes in blood sugar or blood lipids. Even at moderate (5-6 g/d) and high (8-9 g/d) doses, the addition of oat β-glucan to an energy-restricted diet did not enhance the effect of energy restriction on weight loss in overweight women after a period of 3 months [234]. In contrast, hypercholesterolemic Japanese men consuming a mixture of rice and pearl barley with a high β-glucan content (7 g/day), for 12 weeks, experienced a significant reduction in body mass index, waist circumference, and visceral fat in comparison to the placebo group consuming rice alone [149]. Variations in the food sources of β-glucan, rather than in the dose and the duration of administration, may explain such contradictions in findings and appear as critical determinants of body weight regulation.

The satiating properties of soluble dietary fibers have been explained by various mechanisms, all of which are related to several stages in the process of appetite regulation such as taste, gastric emptying, absorption, and fermentation [235]. Firstly, the viscosity of soluble fibers plays an important role in their ability to induce satiety [222, 236, 237]. The most viscous β-glucan-enriched beverage increased perceived satiety significantly more than the beverage containing the same amount of fiber but with enzymatically lowered viscosity [227]. A higher viscosity meal delays gastric emptying [130, 131, 238] and slows the digestion and absorption of nutrients, more precisely glucose, due to reduced enzymatic activity and mucosal absorption [31, 239], leading to early satiety sensations. The overall gastric emptying rate of healthy volunteers, as assessed by the paracetamol absorption test, was slower after the high viscosity oat bran-enriched beverage as compared to the low viscosity drink [240]. Secondly, the lower palatability of fiber-rich meals may affect food intake in a negative manner [241243]. A strong inverse relationship is described between palatability and satiation [244]. When chronically consumed, products enriched with β-glucan had lower sensory acceptance [121, 245]. Third, the reduced glycemic and insulinemic responses to soluble fibers, including β-glucan, can be also responsible for their satiating properties. A significant inverse relationship is reported between satiety and glucose and insulin responses to carbohydrate-rich breakfast cereals [246, 247] and to beverages with different glycemic effects [248]. However, other studies did not report any association of glucose and insulin postprandial levels with satiety [249, 250]. They suggested that the release of putative satiety peptides is a more crucial component of mechanisms initiating and maintaining satiety. Such statement leads to the fourth suggested mechanism that delineates the role of short-chain fatty acids in appetite control. Short-chain fatty acids regulate the release of various gut hormones, which play an important role in satiety signaling. Most β-glucan consumed is fermented in the caecum and colon, producing short-chain fatty acids [79]. The role of short-chain fatty acids in appetite regulation and the potential underlying mechanisms will be elucidated in the following sections.

(i) Short-Chain Fatty Acids and Appetite Regulation

Dietary fibers pass as unaffected through the small intestine, and upon reaching the colon, anaerobic bacteria degrade some dietary fibers via a fermentation process, yielding short-chain fatty acids. The fermentability of soluble fibers by colonic microbiota is greater than that of insoluble fibers. Pectin, resistant starches, gums, and polyfructans (such as inulin) are the most highly fermented substrates. Around 80% of short-chain fatty acids present in the human colonic lumen are in the form of acetate, propionate, and butyrate [251]. About 90% of these short-chain fatty acids are rapidly absorbed in the colon; butyrate is almost entirely used by the colonocytes as their preferred energy substrates [252] while propionate is primarily removed by the liver [251]. On the other hand, acetate passes more freely into the peripheral circulation [253]. Several functions are attributed to short-chain fatty acids, being recently proposed as key energy homeostasis signaling molecules [254].

Accumulating evidence has attributed the satiating effects of fermentable carbohydrates to short-chain fatty acids, their major fermentation products [255]. Short-chain fatty acids regulate appetite through several mechanisms. First, short-chain fatty acids have a role in slowing gastrointestinal motility, thus controlling digestion and nutrient absorption and eliciting an anorexigenic effect. The majority of the studies linking short-chain fatty acids to gastrointestinal motility stems from ruminant animal studies [256], where the production of short-chain fatty acids is greater than that in humans due to differences in gut physiology [257]. However, there are some studies on nonruminants showing that short-chain fatty acids may regulate the overall transit time of the digesta through the large intestine [258, 259]. Such responses were hypothesized to occur via three possible pathways: (1) short-chain fatty acid stimulation of the vagal nerves in the gut, (2) a direct effect of short-chain fatty acids on intestinal smooth muscle tone, and (3) as a consequence of the indirect changes in the secretion of peptide YY (PYY) and other regulatory peptides known to play a role in gastrointestinal motility [260]. In addition, short-chain fatty acids were suggested to regulate gastrointestinal motility by affecting the release of the gastrointestinal 5-hydroxytryptamine (5-HT) via the activation of the free fatty acid receptor 2 (FFA2), the major receptor for short-chain fatty acids. 5-HT or serotonin is a neurotransmitter in the central nervous system, known to modulate mood, behavior, and appetite [261]. Though the central actions of 5-HT are the most documented, 95% of endogenous 5-HT is found peripherally in the gastrointestinal tract [262]. The activation of various 5-HT receptor subtypes stimulates vagal nodose neurons and consequently prolongs colonic transit time [263, 264]. Short-chain fatty acids also regulate appetite by modulating the release of various appetite-related hormones throughout the gastrointestinal tract [265]. The effects of short-chain fatty acids on the release of some of these gut hormones, including PYY, glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), and ghrelin, will be discussed in the following sections, providing partial explanations for the reported impacts of soluble dietary fibers in general, and of β-glucan specifically, on satiety hormones and consequently on appetite and food intake.

Peptide YY

Peptide YY is a 36-amino acid peptide, first isolated from porcine upper small intestine [266]. Two circulating forms of PYY are released by L cells in the distal gut, PYY1–36 and PYY3–36, which is the truncated major circulating form [267]. PYY is secreted throughout the entire length of the gastrointestinal tract, with the highest concentrations found in the colon and rectum [268]. Circulating PYY levels are the lowest in the fasting state and increase following the consumption of a meal, peaking at 1-2 hours and remaining elevated for several hours. Peripheral PYY administration decreased food intake and body weight gain in rats [269]. Similarly, it decreased appetite and food intake both in lean and obese humans [269, 270].

An increased PYY response was consistently described following the consumption of various soluble dietary fibers. Postprandial PYY clearly increased after the consumption of psyllium-enriched test meals in healthy volunteers [271]. The consumption of PolyGlycopleX, a novel functional fiber complex manufactured from three dietary fibers to form a highly viscous polysaccharide with high water-holding and gel-forming properties, for 3 weeks resulted in significantly increased fasting PYY levels as compared to the control product in healthy adults [272]. Moreover, a meal tolerance test in overweight and obese adults consuming 21 g of oligofructose for 3 months resulted in a greater increase in PYY concentrations as compared to the placebo group, concomitant with a reduced self-reported caloric intake [273].

The ability of β-glucan to increase PYY release was reported in various population groups. In healthy subjects, bread enriched with 3 g barley β-glucans induced a 16% higher overall PYY response in comparison to the control bread [223]. Even in overweight men and women, PYY levels responded positively and in a dose-responsive manner to increasing oat β-glucan concentrations, ranging from 2.16 g to 5.45 g per serving, in the first 4 hours after a meal [274].

The fermentation process of β-glucan and the subsequent generation of short-chain fatty acids provide a major explanatory mechanism for β-glucan-induced PYY release. The direct infusion of short-chain fatty acids into rabbit and rat colons significantly increased PYY secretions [275, 276]. The stimulatory effects of short-chain fatty acids on PYY secretions are mainly attributed to a direct interaction between short-chain fatty acids and PYY cells. In fact, FFA2 (also known as GPR43), the major receptor for short-chain fatty acids, is colocalized with PYY immunoreactive enteroendocrine L cells both in rat ileum and human colon [259, 277].

Glucagon-Like Peptide 1

Glucagon-like peptide 1 is cosecreted with PYY from the intestinal L cells, encoded by the proglucagon gene [278]. It is described with a potent incretin effect, stimulating insulin secretion in a glucose-dependent manner. Circulating GLP-1 levels rise following nutrient ingestion, in proportion to the energetic content of the meal [279]. An acute intracerebroventricular administration of GLP-1 to rodents induced a decline in short-term energy intake [280], and was associated with a reduced body weight following repeated administration [281]. Similarly, an intravenous infusion of GLP-1 both in normal weight and in obese subjects resulted in a dose-dependent reduction in food intake [282].

The effects of β-glucan on GLP-1 release have not been yet elucidated; however, the effects of other soluble fibers have been investigated. Variable GLP-1 responses to soluble dietary fiber intake were described, whether elevated, inhibited, or unaffected. The exposure to a diet supplemented with 10% oligofructose for 4 weeks increased the number of GLP-1-producing L-cells as well as endogenous GLP-1 production in the proximal colon of male Wistar rats in comparison to a standard diet [283]. In humans, a standard breakfast containing galactose (50 g) and guar gum (2.5 g) increased, extendedly, GLP-1 release in healthy women as compared with a standard control breakfast [284]. In contrast, in normal-weight males, resistant (pregelatinized) starch (50 g) produced a smaller GLP-1 response than digestible starch (50 g) [285]. On the other hand, the ingestion of pasta enriched with a small amount of psyllium fiber (1.7 g) did not modify postprandial GLP-1 responses in comparison to the control pasta in healthy subjects [286]. Such discrepancies in findings could be attributed to differences in the structures and food sources of ingested soluble fibers and their administered doses.

Colonic fermentation appears to be essential in explaining GLP-1 release in response to soluble dietary fibers, despite inconsistent findings. Though supplementation with fermentable carbohydrates has been consistently associated with increased colonic proglucagon mRNA expression [287293], only few studies detected increased plasma GLP-1 circulating levels in parallel [288290, 293295]. Rats fed high doses of the fermentable inulin-type fructans (100 g/day), over 3 weeks, had higher mRNA expressions in the proximal colon and plasma concentrations of GLP-1 as compared to those fed a standard diet [288]. The exposure of male Wistar rats to a diet supplemented with 10% of inulin-type fructans, for 3 weeks, resulted in a higher caecal pool of GLP-1, an increase in GLP-1 and of its precursor proglucagon mRNA concentrations in the proximal colon, and an increase in the circulating levels of GLP-1 as compared to the standard diet [289]. In normal-weight adults, the microbial fermentation of 16 g of soluble fructan per day, over 2 weeks, induced increased levels of GLP-1 in circulation as compared to the control dextrin maltose [296]. A strong association between postprandial hydrogen production and plasma GLP-1 concentrations was also reported. On the contrary, others have shown no effect of fermentable carbohydrates on circulating GLP-1 levels, whether acutely [297] or over a short duration of 6 days [298]. Based on these findings, the duration of supplementation is an important factor to consider when suggesting fermentation as a basis for soluble fibers-induced GLP-1 release. A sufficient time of 2-3 weeks must be given in order to allow adaptation of the gut microbiota to the additional fermentable carbohydrate within the diet for maximal fermentation to take place [299] and for GLP-1 levels in circulation to be subsequently affected.

Cholecystokinin

Cholecystokinin was among the first hormones shown to modulate food intake [300]. It is secreted from the I cells of the small intestine in response to food ingestion [301]. Cholecystokinin circulating levels rise rapidly after a meal, reaching a peak within 15 minutes. It was found to reduce food intake when infused both in rodents and humans [301, 302]. In fact, plasma CCK levels are strongly associated with subjective measurements of satiety in women [303].

Limited studies described the interaction between soluble dietary fibers and CCK release. Various soluble fibers, including hydrolyzed guar gum (20 g) in obese females [304], β-glucan in barley pasta (15.7 g) in healthy men [128], and isolated fibers from oatmeal and oat bran (8.6 g) in healthy men [305], produced greater and longer-lasting postprandial CCK levels in comparison to low-fiber or placebo meals. A study on overweight women revealed a dose-dependent effect of increased oat β-glucan concentrations, ranging from 2.16 to 5.68 g per serving, on CCK levels in the first 4 hours after a meal, with a significant CCK release observed at a minimum dose of 3.8 g of β-glucan [127].

The role of fermentation and more specifically short-chain fatty acids in regulating CCK release is still poorly understood. In pigs, ileal infusion of short-chain fatty acids did not affect CCK circulating levels [306]. Thus, the fermentation process per se does not explain CCK responses to β-glucan ingestion. Additional mechanisms underlying the stimulatory effects of β-glucan on CCK secretions remain to be explored.

Ghrelin

Ghrelin is the only known orexigenic hormone in the gut. It was initially identified as an endogenous ligand for growth hormone secretagogue receptor (GH-SR) in rat stomach [307]. Circulating ghrelin levels increase before meals and fall rapidly after eating [308]. Both central and peripheral administration of ghrelin increased food intake and body weight in rodents [309, 310].

The effects of soluble fibers, including β-glucan, on postprandial ghrelin are not fully understood. The consumption of a small amount (4 g) of noncaloric soluble psyllium fiber with water suppressed postprandial ghrelin levels as effectively as a 585-Kcal mixed meal in healthy women [311]. On the other hand, postprandial plasma ghrelin did not decrease following gastric distention with a noncaloric liquid meal containing 21 g of soluble guar gum fiber in comparison to carbohydrate-, protein-, and fat-rich meals [312]. Moreover, a 300-Kcal meal enriched with 23 g of psyllium fiber inhibited postprandial suppression of plasma ghrelin levels [313]. When compared to a control breakfast, a soluble arabinoxylan fiber-enriched breakfast (6 g) induced a shorter postprandial ghrelin decline [314] whereas bread enriched with 3 g barley β-glucans resulted in 23% lower ghrelin responses than a control bread [223]. Discrepancies in findings could be explained by variations in the physical and chemical properties of ingested soluble fibers, their different administered doses, and the forms of ghrelin being measured in circulation.

Several mechanisms were suggested to explain fiber-induced ghrelin suppression, most importantly fermentation. Feeding a diet supplemented with 10% of the fermentable inulin to rats over 3 weeks significantly reduced ghrelin levels in comparison to a standard diet [289]. The ingestion of 56 g of high-fructose corn syrup (HFCS) plus 24 g inulin induced greater postprandial ghrelin suppression as compared to HFCS without inulin, both at 4.5 and 6 hours, in healthy subjects [315]. Such colonic fermentation may reduce ghrelin via increasing circulating PYY levels. Administration of PYY to humans reduced serum ghrelin levels [316]. In addition to colonic fermentation, other mechanisms were also hypothesized. A possible inner-gastric pathway may operate through gastric somatostatin, which is released following the consumption of beet fiber in diabetic individuals [317]. Somatostatin administration decreased ghrelin secretion in rats [318] and lowered circulating ghrelin levels in humans [319]. In addition, GLP-1 release in response to soluble fibers is another potential mechanism. Infusion of GLP-1 into isolated rat stomach suppressed ghrelin secretions [320].

In conclusion, there is evidence for the satiety efficacy of β-glucan. Such satiating capacity appears to be comparable to that of other soluble viscous and fermentable fibers. Although several mechanisms may explain the satiating properties of β-glucan, the generation of short-chain fatty acids through colonic fermentation has the most documented effects. Short-chain fatty acids affect satiety by primarily modulating the release of various appetite-regulating hormones, including PYY, GLP-1, and ghrelin. However, other yet unknown mechanisms, independent of short-chain fatty acids, may be involved in the regulation of gut hormones by β-glucans. Since research in this area is still limited, such mechanisms necessitate further investigation. Combining knowledge from previous studies, a minimum level of β-glucan, ranging from 4 to 6 g, appears to be essential for its gastrointestinal appetite-regulating effects [321]. However, additional studies addressing the role of dose, form, molecular weight and carrier food on the interaction between β-glucan and satiety are still needed before drawing solid conclusions. Moreover, the role of β-glucan in long-term weight regulation is still not well understood and needs to be further explored. Inconsistencies in data regarding the effect of dietary or supplementary β-glucan on body weight highlight the need for additional research.


4. Beta Glucan-Fortified Foods in the Market
4.1. Global Dietary Fiber Intake

Insufficient intake of dietary fiber has been reported worldwide. However, the estimates of fiber intake are highly variable.

In the United States, dietary fiber intake was calculated to be 17 g for males and 12.8 g for females based on the NHANES III study [322]. Based on the results of the Nationwide Food Consumption Survey, a mean dietary fiber intake of 11.4 g per day was reported [323]. Similarly, a mean daily fiber intake of 13.7 g in total, comprising 4.2 g of water-soluble fiber and 6.8 g of water-insoluble fiber, was described based on the Multiple Risk Factor Intervention Trial [324]. In contrast, Hallfrisch et al. [325] and Hermann et al. [326] reported higher intake values, averaging 15 g/day and 18.3 g/day, respectively. Regardless, intakes of dietary fibers in the American population are below levels recommended by the Institute of Medicine (38 g for males and 25 g for females).

In Canada, low daily dietary fiber intakes have been also noted. According to Nova Scotia Department of Health [327], the mean dietary fiber intake was estimated to be 13.5 g per day, ranging from 9.6 g (young women) to 17 g (elderly men). The main sources (88%) of fiber in the diet were reported to be pasta, rice, cereals and breads, vegetables, fruits, and fruit juices [327]. Similarly, in a more recent study on healthy Canadian adolescent males, a median dietary fiber intake of 13.1 g per day was observed [328].

In Europe, the estimated national values for dietary fiber intake were found to fall within a narrower range: 16 g/day in France [329], 22.1 g/day in Sweden [330], 16.7–20.1 g/day in Finland [331], 21 g/day in Germany [332], and 20–22 g/day in the Netherlands [333]. An exceptionally high intake level of fiber was found in Switzerland, 30–33 g/day, reflecting a positive trend in the eating habits of this population [334]. In the United Kingdom, lower values of 14–16 g/day for men and 18-19 g/day for women were reported [335].

Thus, fiber intakes worldwide are well below the recommended levels despite the recommendations of several health organizations to increase the consumption of foods with high fiber content.

4.2. Beta Glucan in Functional Foods

The introduction of fiber into traditional and processed foods provides one method by which to increase fiber intake [81]. Based on consumers' demands for healthier options, the food industry has aimed at developing new products towards functional foods and ingredients.

The best-known examples of functional foods are fermented milks and yoghurts. Several fiber-fortified dairy products are now appearing in market, with inulin being a popular fiber source for such products due to its combined nutritional and technological characteristics [336341].

Beta glucan is commonly used as a functional ingredient in foods as it is readily available as a byproduct of oat and barley milling and it also provides physiological benefits that are supported by health claims in many jurisdictions. This polysaccharide is also used as a food ingredient in the form of hydrocolloids [342, 343] or as powder using microparticulation [344]. The addition of β-glucan into various products, such as baking products, muffins, cakes, pasta, noodles, muesli cereals, milk products, soups, salad dressings, beverages, and reduced-fat dairy and meat products, was found to affect their attributes, including bread making performance, water binding and emulsion stabilizing capacity, thickening ability, texture and appearance, in a concentration-, molecular weight-, and structure-dependent manner [22, 345, 346]. Besides enhancing the nutritional value, β-glucans can improve the sensory and gustatory properties of some products. However, the stability of the physiological properties of β-glucan when extracted and added to foods has received little examination, leaving uncertain the health benefits of β-glucan when incorporated into foods.

In the following sections, the chemical and physiologic functionality of β-glucans in food preparations is discussed.

4.2.1. Breakfast Cereals

Oats have been frequently used as an additive in the preparation of cereal products, decreasing water activity and subsequently prolonging durability [81]. Several oat-based breakfast cereals have experienced great success in the market. Adding 20% oat β-glucan into chocolate breakfast flakes protected the viability and stabilized the cells of lactobacillus rhamnosus, a gut-friendly probiotic bacteria, at temperatures higher than 20°C [347]. As breakfast cereals are commonly consumed in North America, several oat-based hot and cold breakfast cereals are available in the market, making use of β-glucan's approved health claims. These products are readily accepted by consumers.

4.2.2. Baking Products

The incorporation of oats into baking products, such as bread, baked goods, and dough, has been widely tested [81]. The incorporation of β-glucans to baking products seems promising, ameliorating both sensory characteristics and health properties of products at a maximum concentration of 20%. When oat flour has been substituted for 10% of fine wheat flour in bread, product quality improved in terms of crust color, bread softness, and taste [348]. Moreover, a positive effect of oat β-glucan on the sensorial characteristics of biscuits has been described [343]. The addition of the hydrocolloids Nutrim O-B (10% β-glucan) and C-Trim-20 (20% β-glucan) increased the taste, moisture, and adhesiveness of the product. Similarly, an oat component called Nutrim-5, a hydrocolloid preparation of β-glucans produced by treating oat grain or flour with a thermal process, improved the overall strength of pasta without negatively affecting either the quality or the sensory properties [349].

4.2.3. Milk Products

Oats are also used as additives in the production of yogurts with increased amount of fiber [81]. Fiber addition increased the solidity ratio and texture of unsweetened yogurts, accelerated their acidification rate, and increased their viscosity [350]. When substituting fat with β-glucans hydrocolloid component at 3.47% and 6.8% in low-fat cheddar cheeses, a softer texture was described with decreased melting time and lowered sensory properties [351]. The addition of oat β-glucans concentrate, at 0.7% and 1.4% w/w, to white low-fat cheese products in salt brine improved product texture, while unfavorably affecting its appearance, taste, and odor when compared with the control samples [352]. The probiotic effect of β-glucans has been also studied. Beta glucans selectively support the growth of Lactobacilli and Bifidobacteria, both of them being antagonists to pathogenic bacteria in the digestive system [12, 173]. The addition of oat β-glucans to probiotic milk-based drinks, at doses of 0.31–0.36%, increased their stability along with their health benefits [353].

The effects of β-glucan on milk sensorial properties have been reported, but results are variable [56, 121, 245, 354]. Oat milk containing β-glucan (0.5 g/100 g) was well perceived and got similar sensory evaluation as the control drink (<0.02 g β-glucan/100 g) [56]. Sensory evaluations were higher for the milk beverage (500 mL) enriched with 5 g as compared to the one enriched with 10 g of oat and barley β-glucan [121]. However, milk enriched with 5 g β-glucan had similar sensorial characteristics to the control drink.

In conclusion, the addition of β-glucans to yogurts seems to impair their sensory qualities despite improving other rheological properties, irrespective of the dose. On the other hand, addition of β-glucans to milk, at doses not exceeding 1%, may provide health benefits without compromising sensorial attributes.

4.2.4. Meat Products

Due to its ability to mimic fat characteristics, oat fiber is one of the most effective ingredients in making low-fat meat products. It can be used to offset the poor quality associated with low-fat beef burgers [355] as well as low-fat sausages [356]. There is no specific study investigating the effect of β-glucan, as a fat replacer, on the sensorial attributes and rheological properties of meat products. Thus, future studies should address this applicability option of β-glucan.

In conclusion, the introduction of β-glucans into food preparations has both beneficial and deleterious impacts. Such impacts mainly depend on the food product to which β-glucan is added, in addition to the source, the form, and the dose of β-glucan in use. Alterations in the sensorial properties and physiochemical attributes induced by β-glucan may be desirable for some products while being detrimental for others.

4.3. Challenges of Beta Glucan Fortification

One of the major challenges faced by the functional food industry is developing functional foods with an acceptable taste to the average consumer [357]. Incorporating significant quantities of fiber into food products constitutes a technological challenge due to the possible deleterious effects on textural quality. The addition of fibers may contribute to modifications in the texture, sensory characteristics, and shelf-life of foods due to their water-binding capacity, gel-forming ability, fat mimetic, antisticking, anticlumping, texturising, and thickening effects [358, 359].

Adding β-glucan into milk and dairy products was reported to be problematic; first due to its viscosity that may alter the sensory characteristic of foods and second due to its typical slimy texture in the mouth [100]. However, the acceptance rate does not seem to be influenced by the amount of β-glucan added to test products but rather by the duration of consumption of these products. Blackcurrant flavored oat milk (0.5 g β-glucan/100 g) was well liked among volunteers without differencing it from its counterpart, a rice beverage with the same flavor (<0.02 g β-glucan/100 g), at a single evaluation [56]. In addition, the sensory quality of a flavored oat-based fermented product (containing 0.6% β-glucan) was acceptable, in comparison to flavored commercial yogurt or nondairy products, in one single taste test [354]. In contrast, when consumed over 5 weeks, oat-based fermented dairy products (0.5-0.6% β-glucan) were less preferred than fermented dairy-based control products (<0.05% β-glucan) [245]. Similarly, after a period of 5 weeks, beverages with 10 g of barley or oat β-glucan were rated lower than those with 5 g of barley or oat β-glucan [121]. These findings reflect that, when chronically consumed, β-glucan may impair the sensorial perceptions of foods.

Thus, the development of β-glucan-fortified foods remains highly challenging as consumers are not willing to accept greater health benefits on the expense of deteriorations in the sensory characteristics of food products.

4.4. Effects of Food Processing on the Biological Activities of β-Glucan

Food processing alters the physical, chemical, and physiologic characteristics of dietary fibers. Several processing techniques, including cooking, freezing, and storing, affect the physicochemical characteristics of β-glucan. Both molecular weight and extractability are important components of the physiological activity of β-glucan and both can be affected by food processing [360]. The molecular weight of β-glucan in processed oat foods can be smaller than unprocessed. Solubility, which is related to extractability, typically increases initially with processing as depolymerisation occurs and β-glucan is released from the cell wall; however, as this degradation continues, solubility decreases as insoluble β-glucan aggregates are formed [361]. In products such as oat porridge and oat granola, there is little effect of processing on β-glucan molecular weight [172, 362]. However, the molecular weight of β-glucan in products such as oat crisp bread decreases by 92% compared to its original oat source [362]. Other studies have also seen reductions in molecular weight in similar products made from different grains [168, 172, 363] and attributed these reductions in molecular weight to the effects of β-glucanase enzymes in wheat flour used to make these products [168, 172, 364366]. These reductions in molecular weight increase with the mixing and fermentation time of the dough [172]. Freezing was also found to affect β-glucan solubility. Frozen storage of oat bran muffins significantly lowered β-glucan solubility over time, using in vitro extraction simulating human digestion [231]. In addition, freeze-thaw cycle reduced the solubility of β-glucan in oat bran muffins by 9% to 55% of the fresh values.

Whether such physicochemical alterations induced by food processing have a significant impact on the established health properties of β-glucan is not clear. Effectiveness of β-glucan in modulating glucose and insulin parameters is related to dose and viscosity, which can be altered during processing [74]. In fact, 85% of the variation in blood glucose concentrations is explained by the amount of β-glucan solubilized and not the total amount originally added to food [367]. On the other hand, the role of viscosity, molecular weight, and solubility, susceptible to modifications by food processing, in regulating β-glucan's effect on cholesterol metabolism has not been demonstrated and requires further investigation [74].

Thus, since physiologic effects of β-glucans may be altered by food processing, it is important to develop a further understanding of such an interaction.


5. Summary and Conclusion

It is clear that β-glucan is an important food component in the modulation of metabolic dysregulations associated with the metabolic syndrome. However, dose, form, molecular weight, and the carrier food of β-glucan shape its effect. The physiological effects of β-glucan are mainly attributed to its physicochemical and structural characteristics interacting with the gastrointestinal tract, as reflected by its ability to generate viscous solutions at low concentrations in the upper part of the gastrointestinal tract and to undergo fermentation in the colon.

Although the physiological effects of ingested β-glucan are similar to other soluble fibers, its availability and ease of handling leads it to be increasingly incorporated into foods with the purpose of increasing daily fiber consumption. However, challenges in incorporating β-glucan into some food items without compromising their sensorial properties and their acceptance by consumers do still exist, and need to be resolved.


Conflict of Interests

D. El Khoury, C. Cuda, B. L. Luhovyy, and G. H. Anderson declare that there is no conflict of interests.


References
1. World Health Organization: Obesity and overweight: Fact Sheet, http://www.who.int/hpr/NPH/docs/gs_obesity.pdf.
2. Fujioka K. Management of obesity as a chronic disease: nonpharmacologic, pharmacologic, and surgical optionsObesity ResearchYear: 2002102
3. Torpy JM,Lynm C,Glass RM. JAMA patient page. The metabolic syndromeJournal of the American Medical AssociationYear: 20062957p. 850
4. Vrolix R,Mensink RP. Effects of glycemic load on metabolic risk markers in subjects at increased risk of developing metabolic syndromeThe American Journal of Clinical NutritionYear: 201092236637420504977
5. Esposito K,Marfella R,Ciotola M,et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trialJournal of the American Medical AssociationYear: 2004292121440144615383514
6. McKeown NM,Meigs JB,Liu S,Saltzman E,Wilson PWF,Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the framingham offspring cohortDiabetes CareYear: 200427253854614747241
7. Azadbakht L,Mirmiran P,Esmaillzadeh A,Azizi T,Azizi F. Beneficial effects of a dietary approaches to stop hypertension eating plan on features of the metabolic syndromeDiabetes CareYear: 200528122823283116306540
8. Esmaillzadeh A,Mirmiran P,Azizi F. Whole-grain consumption and the metabolic syndrome: a favorable association in Tehranian adultsEuropean Journal of Clinical NutritionYear: 200559335336215536473
9. Freire RD,Cardoso MA,Gimeno SGA,Ferreira SRG. Dietary fat is associated with metabolic syndrome in Japanese BraziliansDiabetes CareYear: 20052871779178515983334
10. Laaksonen DE,Toppinen LK,Juntunen KS,et al. Dietary carbohydrate modification enhances insulin secretion in persons with the metabolic syndromeAmerican Journal of Clinical NutritionYear: 20058261218122716332654
11. Sahyoun NR,Jacques PF,Zhang XL,Juan W,McKeown NM. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adultsAmerican Journal of Clinical NutritionYear: 200683112413116400060
12. Charalampopoulos D,Wang R,Pandiella SS,Webb C. Application of cereals and cereal components in functional foods: a reviewInternational Journal of Food MicrobiologyYear: 2002791-213114112382693
13. Demirbas A. β-Glucan and mineral nutrient contents of cereals grown in TurkeyFood ChemistryYear: 2005904773777
14. Holtekjølen AK,Uhlen AK,Bråthen E,Sahlstrøm S,Knutsen SH. Contents of starch and non-starch polysaccharides in barley varieties of different originFood ChemistryYear: 2006943348358
15. Stuart IM,Loi L,Fincher GB. Immunological comparison of (1-3,1-4)-beta-glucan endohydrolases in germinating cerealsJournal of Cereal ScienceYear: 1987614552
16. Bacic A,Fincher GB,Stone BA. Chemistry, Biochemistry, and Biology of (1-3)-[beta]-Glucans and Related PolysaccharidesYear: 20091st editionAmsterdam, The NetherlandsAcademic Press
17. Teas J. The dietary intake of Laminaria, a brown seaweed, and breast cancer preventionNutrition and CancerYear: 1983432172226302638
18. Wasser SP,Weis AL. Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspectiveCritical Reviews in ImmunologyYear: 199919165969987601
19. Statistics Canada: National supply and disposition of grains in Canada, 2005-2006 to 2010-2011—Barley, http://www.statcan.gc.ca/pub/22-002-x/2011003/t009-eng.pdf.
20. Statistics Canada: National supply and disposition of grains in Canada, 2005-2006 to 2010-2011—Oats, http://www.statcan.gc.ca/pub/22-002-x/2011003/t008-eng.pdf.
21. FAOSTAT: food and agricultural commodities production. Countries by commodity, http://faostat.fao.org/site/339/default.aspx.
22. Lazaridou A,Biliaderis CG. Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effectsJournal of Cereal ScienceYear: 2007462101118
23. Wood PJ. Evaluation of oat bran as a soluble fibre source. Characterization of oat β-glucan and its effects on glycaemic responseCarbohydrate PolymersYear: 1994254331336
24. Brennan CS,Cleary LJ. The potential use of cereal (1→3, 1→4)-β-d-glucans as functional food ingredientsJournal of Cereal ScienceYear: 2005421113
25. Phillips GO,Cui SW. An introduction: evolution and finalisation of the regulatory definition of dietary fibreFood HydrocolloidsYear: 2011252139143
26. Champ M,Langkilde AM,Brouns F,Kettlitz B,Le Bail-Collet Y. Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labellingNutrition Research ReviewsYear: 200316214316119087387
27. Trowell H. Ischemic heart disease and dietary fiberAmerican Journal of Clinical NutritionYear: 19722599269324559894
28. Trowell H,Southgate DA,Wolever TM,Leeds AR,Gassull MA,Jenkins DJ. Letter: dietary fibre redefinedThe LancetYear: 197617966p. 967
29. Champ M,Langkilde AM,Brouns F,Kettlitz B,Collet YLB. Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspectsNutrition Research ReviewsYear: 2003161718219079938
30. Codex Alimentarius Commission: ALINORM 10/33/26, Report of the 31st Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses, Düsseldorf, Germany, 2009, https://www.ccnfsdu.de/fileadmin/user_upload/Download/2009/al33_26e.pdf.
31. Jenkins DJA,Wolever TMS,Leeds AR. Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosityBritish Medical JournalYear: 19781612413921394647304
32. Wood PJ,Braaten JT,Scott FW,Riedel KD,Wolynetz MS,Collins MW. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose loadBritish Journal of NutritionYear: 19947257317437826996
33. Wong JMW,De Souza R,Kendall CWC,Emam A,Jenkins DJA. Colonic health: fermentation and short chain fatty acidsJournal of Clinical GastroenterologyYear: 200640323524316633129
34. Macfarlane S,Macfarlane GT,Cummings JH. Review article: prebiotics in the gastrointestinal tractAlimentary Pharmacology and TherapeuticsYear: 200624570171416918875
35. Roberfroid MB. Inulin-type fructans: functional food ingredientsJournal of NutritionYear: 200713711
36. Cummings JH,Roberfroid MB,Andersson H,et al. A new look at dietary carbohydrate: chemistry, physiology and healthEuropean Journal of Clinical NutritionYear: 19975174174239234022
37. Englyst KN,Englyst HN. Carbohydrate bioavailabilityBritish Journal of NutritionYear: 200594111116115326
38. Sullivan DM,Carpenter DE. Methods of Analysis for Nutrition LabelingYear: 1993Arlington, Va, USAAOAC International
39. Cho S,DeVries JW,Prosky L. Dietary Fiber Analysis and ApplicationsYear: 1997Gaithersburg, Md, USAAOAC International
40. Cummings JH,Stephen AM. Carbohydrate terminology and classificationEuropean Journal of Clinical NutritionYear: 2007611S5S1817992187
41. Englyst KN,Liu S,Englyst HN. Nutritional characterization and measurement of dietary carbohydratesEuropean Journal of Clinical NutritionYear: 2007611S19S3917992185
42. Cummings JH. Short chain fatty acids in the human colonGutYear: 19812297637797028579
43. Cummings JH,Englyst HN,Wiggins HS. The role of carbohydrates in lower gut functionNutrition ReviewsYear: 198644250543703388
44. Gibson GR,Probert HM,Van Loo J,Rastall RA,Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebioticsNutrition Research ReviewsYear: 200417225927519079930
45. Douglas LC,Sanders ME. Probiotics and prebiotics in dietetics practiceJournal of the American Dietetic AssociationYear: 2008108351052118313433
46. Lee SC. Dietary fiber analysis for nutrition labellingCereal Foods WorldYear: 199237765771
47. McCleary BV,Codd R. Measurement of (1-3),(1-4)-beta-D-glucan in barley and oats-a streamlined enzymatic procedureJournal of the Science of Food and AgricultureYear: 1991552303312
48. McCleary BV. An integrated procedure for the measurement of total dietary fibre (including resistant starch), non-digestible oligosaccharides and available carbohydratesAnalytical and Bioanalytical ChemistryYear: 2007389129130817619181
49. McCleary BV,DeVries JW,Rader JI,et al. Determination of total dietary fiber (CODEX Definition) by enzymatic-gravimetric method and liquid chromatography: collaborative studyJournal of AOAC InternationalYear: 201093122123320334184
50. Zygmunt LC,Paisley SD. Enzymatic method for determination of (1–>3)(1–>4)-beta-D-glucans in grains and cereals: collaborative studyJournal of AOAC InternationalYear: 1993765106910828241811
51. Rampitsch C,Ames N,Storsley J,Marien L. Development of a monoclonal antibody-based enzyme-linked immunosorbent assay to quantify soluble β-glucans in oats and barleyJournal of Agricultural and Food ChemistryYear: 200351205882588713129289
52. Czuchajowska Z,Szczodrak J,Pomeranz Y. Characterization and estimation of barley polysaccharides by near-infrared spectroscopy. 1. Barleys, starches, and beta-deuterium-glucansCereal ChemistryYear: 1992694413418
53. Jørgensen KG. Quantification of high molecular weight (1→3)(1→4)-β-d-glucan using Calcofluor complex formation and flow injection analysis. I. analytical principle and its standardizationCarlsberg Research CommunicationsYear: 1988535277285
54. Brennan CS. Dietary fibre, glycaemic response, and diabetesMolecular Nutrition and Food ResearchYear: 200549656057015926145
55. Brown L,Rosner B,Willett WW,Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysisAmerican Journal of Clinical NutritionYear: 199969130429925120
56. Önning G,Wallmark A,Persson M,Åkesson B,Elmståhl S,Öste R. Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemiaAnnals of Nutrition and MetabolismYear: 199943530130910749030
57. Anderson JW,Davidson MH,Blonde L,et al. Long-term cholesterol-lowering effects of psyllium as an adjunct to diet therapy in the treatment of hypercholesterolemiaAmerican Journal of Clinical NutritionYear: 20007161433143810837282
58. Slavin JL. Dietary fiber and body weightNutritionYear: 200521341141815797686
59. Liu S,Sesso HD,Manson JE,Willett WC,Buring JE. Is intake of breakfast cereals related to total and cause-specific mortality in men?American Journal of Clinical NutritionYear: 200377359459912600848
60. Jensen MK,Koh-Banerjee P,Hu FB,et al. Intakes of whole grains, bran, and germ and the risk of coronary heart disease in menAmerican Journal of Clinical NutritionYear: 20048061492149915585760
61. Qi L,Van Dam RM,Liu S,Franz M,Mantzoros C,Hu FB. Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic womenDiabetes CareYear: 200629220721116443861
62. Artiss JD,Brogan K,Brucal M,Moghaddam M,Jen KLC. The effects of a new soluble dietary fiber on weight gain and selected blood parameters in ratsMetabolismYear: 200655219520216423626
63. Galisteo M,Morón R,Rivera L,Romero R,Anguera A,Zarzuelo A. Plantago ovata husks-supplemented diet ameliorates metabolic alterations in obese Zucker rats through activation of AMP-activated protein kinase. Comparative study with other dietary fibersClinical NutritionYear: 201029226126719735963
64. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy statusEndocrinologyYear: 2003144125179518312960015
65. Steemburgo T,Dall’Alba V,Almeida JC,Zelmanovitz T,Gross JL,de Azevedo MJ. Intake of soluble fibers has a protective role for the presence of metabolic syndrome in patients with type 2 diabetesEuropean Journal of Clinical NutritionYear: 200963112713317882139
66. Esposito K,Nappo F,Giugliano F,et al. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitusAmerican Journal of Clinical NutritionYear: 20037861135114014668275
67. Qi L,Rimm E,Liu S,Rifai N,Hu FB. Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic menDiabetes CareYear: 20052851022102815855561
68. Mantzoros CS,Li T,Manson JE,Meigs JB,Hu FB. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetesJournal of Clinical Endocrinology and MetabolismYear: 20059084542454815914524
69. Ripsin CM,Keenan JM,Jacobs DR,et al. Oat products and lipid lowering: a meta-analysisJournal of the American Medical AssociationYear: 199226724331733251317928
70. Hallfrisch J,Behall KM. Physiological responses of men and women to barley and oat extracts (nu-trimX). I. Breath hydrogen, methane, and gastrointestinal symptomsCereal ChemistryYear: 20038017679
71. Barsanti L,Passarelli V,Evangelista V,Frassanito AM,Gualtieri P. Chemistry, physico-chemistry and applications linked to biological activities of β-glucansNatural Product ReportsYear: 201128345746621240441
72. Zeković DB,Kwiatkowski S,Vrvić MM,Jakovljević D,Moran CA. Natural and modified (1→3)-β-D-glucans in health promotion and disease alleviationCritical Reviews in BiotechnologyYear: 200525420523016419618
73. McIntosh M,Stone BA,Stanisich VA. Curdlan and other bacterial (1→3)-β-D-glucansApplied Microbiology and BiotechnologyYear: 200568216317315818477
74. Wood PJ. Cereal B-glucans in diet and healthJournal of Cereal ScienceYear: 200746230238
75. Volman JJ,Ramakers JD,Plat J. Dietary modulation of immune function by β-glucansPhysiology and BehaviorYear: 200894227628418222501
76. Breedveld MW,Miller KJ. Cyclic β-glucans of members of the family RhizobiaceaeMicrobiological ReviewsYear: 19945821451618078434
77. Soltanian S,Stuyven E,Cox E,Sorgeloos P,Bossier P. Beta-glucans as immunostimulant in vertebrates and invertebratesCritical Reviews in MicrobiologyYear: 200935210913819514911
78. Ooi VEC,Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexesCurrent Medicinal ChemistryYear: 20007771572910702635
79. Topping DL,Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharidesPhysiological ReviewsYear: 20018131031106411427691
80. Kedia G,Vázquez JA,Pandiella SS. Evaluation of the fermentability of oat fractions obtained by debranning using lactic acid bacteriaJournal of Applied MicrobiologyYear: 200810541227123718713289
81. Havrlentova M,Petrulakova Z,Burgarova A,et al. Cereal B-glucans and their significance for the preparation of functional foods—a reviewCzech Journal of Food SciencesYear: 2011291114
82. Virkki L,Johansson L,Ylinen M,Maunu S,Ekholm P. Structural characterization of water-insoluble nonstarchy polysaccharides of oats and barleyCarbohydrate PolymersYear: 2005593357366
83. Bohn JA,BeMiller JN. (1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationshipsCarbohydrate PolymersYear: 1995281314
84. Fleet GH,Manners DJ. Isolation and composition of an alkali soluble glucan from the cell walls of Saccharomyces cerevisiaeJournal of General MicrobiologyYear: 1976941180192778330
85. Nelson TE,Lewis BA. Separation and characterization of the soluble and insoluble components of insoluble laminaranCarbohydrate ResearchYear: 197433163744363664
86. Johansson L,Virkki L,Maunu S,Lehto M,Ekholm P,Varo P. Structural characterization of water soluble β-glucan of oat branCarbohydrate PolymersYear: 2000422143148
87. Ren Y,Ellis PR,Ross-Murphy SB,Wang Q,Wood PJ. Dilute and semi-dilute solution properties of (1→3), (1→4)-β-D-glucan, the endosperm cell wall polysaccharide of oats (Avena sativa L.)Carbohydrate PolymersYear: 2003534401408
88. Brown GD,Gordon S. Fungal β-glucans and mammalian immunityImmunityYear: 200319331131514499107
89. Sonck E,Stuyven E,Goddeeris B,Cox E. The effect of β-glucans on porcine leukocytesVeterinary Immunology and ImmunopathologyYear: 20101353-419920720034677
90. Vetvicka V,Vetvickova J. Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality Glucans, blood cholesterol, and macrophage function V. Vetvicka and J. VetvickovaJournal of ImmunotoxicologyYear: 200961303519519160
91. Vetvicka V,Dvorak B,Vetvickova J,et al. Orally administered marine (1→3)-β-d-glucan Phycarine stimulates both humoral and cellular immunityInternational Journal of Biological MacromoleculesYear: 200740429129816978690
92. Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic functionClinical Microbiology ReviewsYear: 200013452353311023954
93. Hetland G,Ohno N,Aaberge IS,Løvik M. Protective effect of β-glucan against systemic Streptococcus pneumoniae infection in miceFEMS Immunology and Medical MicrobiologyYear: 200027211111610640605
94. Saegusa S,Totsuka M,Kaminogawa S,Hosoi T. Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acidFEMS Immunology and Medical MicrobiologyYear: 200441322723515196572
95. Babineau TJ,Hackford A,Kenler A,et al. A phase II multicenter, double-blind, randomized, placebo-controlled study of three dosages of an immunomodulator (PGG-glucan) in high-risk surgical patientsArchives of SurgeryYear: 199412911120412107979954
96. Babineau TJ,Marcello P,Swails W,Kenler A,Bistrian B,Forse RA. Randomized phase I/II trial of a macrophage-specific immunomodulator (PGG-glucan) in high-risk surgical patientsAnnals of SurgeryYear: 199422056016097979607
97. Dellinger EP,Babineau TJ,Bleicher P,et al. Effect of PGG-glucan on the rate of serious postoperative infection or death observed after high-risk gastrointestinal operationsArchives of SurgeryYear: 1999134997798310487593
98. Nicolosi R,Bell SJ,Bistrian BR,Greenberg I,Forse RA,Blackburn GL. Plasma lipid changes after supplementation with β-glucan fiber from yeastAmerican Journal of Clinical NutritionYear: 199970220821210426696
99. Neyrinck AM,Possemiers S,Verstraete W,De Backer F,Cani PD,Delzenne NM. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice Journal of Nutritional Biochemistry. In press.
100. Wood PJ,Beer MU. Mazza JFunctional oat productsFunctional Foods, Biochemical and Processing AspectsYear: 1998Lancester, UKTechnomic Publishing Company
101. Wood PJ,Beer MU,Butler G. Evaluation of role of concentration and molecular weight of oat β-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose loadBritish Journal of NutritionYear: 2000841192310961156
102. Autio K. Eliasson A-CFunctional aspects of cell wall polysaccharidesCarbohydrates in FoodYear: 1996New York, NY, USAMarcel Dekker
103. Xu H,Song Y,You NC,et al. Prevalence and clustering of metabolic risk factors for type 2 diabetes among Chinese adults in Shanghai, ChinaBMC Public HealthYear: 201010, article 683
104. Hanai H,Ikuma M,Sato Y,et al. Long-term effects of water-soluble corn bran hemicellulose on glucose tolerance in obese and non-obese patients: improved insulin sensitivity and glucose metabolism in obese subjectsBioscience, Biotechnology and BiochemistryYear: 199761813581361
105. Thorsdottir I,Andersson H,Einarsson S. Sugar beet fiber in formula diet reduces postprandial blood glucose, serum insulin and serum hydroxyprolineEuropean Journal of Clinical NutritionYear: 19985221551569505164
106. Anderson JW,Allgood LD,Turner J,Oeltgen PR,Daggy BP. Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemiaAmerican Journal of Clinical NutritionYear: 199970446647310500014
107. Sierra M,Garcia JJ,Fernández N,et al. Effects of ispaghula husk and guar gum on postprandial glucose and insulin concentrations in healthy subjectsEuropean Journal of Clinical NutritionYear: 200155423524311360127
108. Sierra M,García JJ,Fernández N,et al. Therapeutic effects of psyllium in type 2 diabetic patientsEuropean Journal of Clinical NutritionYear: 200256983084212209371
109. Juntunen KS,Niskanen LK,Liukkonen KH,Poutanen KS,Holst JJ,Mykkänen HM. Postprandial glucose, insulin, and incretin responses to grain products in healthy subjectsAmerican Journal of Clinical NutritionYear: 200275225426211815315
110. Alminger M,Eklund-Jonsson C. Whole-grain cereal products based on a high-fibre barley or oat genotype lower post-prandial glucose and insulin responses in healthy humansEuropean Journal of NutritionYear: 200847629430018633670
111. Kendall CWC,Esfahani A,Hoffman AJ,et al. Effect of novel maize-based dietary fibers on postprandial glycemia and insulinemiaJournal of the American College of NutritionYear: 200827671171819155430
112. Garcia AL,Otto B,Reich SC,et al. Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose toleranceEuropean Journal of Clinical NutritionYear: 200761333434116988651
113. Song YJ,Sawamura M,Ikeda K,Igawa S,Yamori Y. Soluble dietary fibre improves insulin sensitivity by increasing muscle GLUT-4 content in stroke-prone spontaneously hypertensive ratsClinical and Experimental Pharmacology and PhysiologyYear: 2000271-2414510696527
114. Mäkeläinen H,Anttila H,Sihvonen J,et al. The effect of β-glucan on the glycemic and insulin indexEuropean Journal of Clinical NutritionYear: 200761677978517151593
115. Maki KC,Galant R,Samuel P,et al. Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressureEuropean Journal of Clinical NutritionYear: 200761678679517151592
116. Tappy L,Gügolz E,Würsch P. Effects of breakfast cereals containing various amounts of β-glucan fibers on plasma glucose and insulin responses in NIDDM subjectsDiabetes CareYear: 19961988318348842600
117. Tapola N,Karvonen H,Niskanen L,Mikola M,Sarkkinen E. Glycemic responses of oat bran products in type 2 diabetic patientsNutrition, Metabolism and Cardiovascular DiseasesYear: 2005154255261
118. Hallfrisch J,Scholfield DJ,Behall KM. Diets containing soluble oat extracts improve glucose and insulin responses of moderately hypercholesterolemic men and womenAmerican Journal of Clinical NutritionYear: 19956123793847840078
119. Cavallero A,Empilli S,Brighenti F,Stanca AM. High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic responseJournal of Cereal ScienceYear: 20023615966
120. Jenkins AL,Jenkins DJA,Zdravkovic U,Würsch P,Vuksan V. Depression of the glycemic index by high levels of β-glucan fiber in two functional foods tested in type 2 diabetesEuropean Journal of Clinical NutritionYear: 200256762262812080401
121. Biörklund M,van Rees A,Mensink RP,Önning G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with β-glucans from oats or barley: a randomised dose-controlled trialEuropean Journal of Clinical NutritionYear: 200559111272128116015250
122. Granfeldt Y,Nyberg L,Björck I. Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjectsEuropean Journal of Clinical NutritionYear: 200862560060717426742
123. Hlebowicz J,Darwiche G,Björgell O,Almér LO. Effect of muesli with 4 g oat β-glucan on postprandial blood glucose, gastric emptying and satiety in healthy subjects: a randomized crossover trialJournal of the American College of NutritionYear: 200827447047518978166
124. Holm J,Koellreutter B,Wursch P. Influence of sterilization, drying and oat bran enrichment of pasta on glucose and insulin responses in healthy subjects and on the rate and extent of in vitro starch digestionEuropean Journal of Clinical NutritionYear: 19924696296401396481
125. Björck I,Liljeberg H,Östman E. Low glycaemic-index foodsBritish Journal of NutritionYear: 2000831S149S15510889806
126. Chandra R,Liddle RA. CholecystokininCurrent Opinion in Endocrinology, Diabetes and ObesityYear: 20071416367
127. Beck EJ,Tosh SM,Batterham MJ,Tapsell LC,Huang XF. Oat β-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjectsMolecular Nutrition and Food ResearchYear: 200953101343135119753601
128. Bourdon I,Yokoyama W,Davis P,et al. Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with β-glucanAmerican Journal of Clinical NutritionYear: 199969155639925123
129. Braaten JT,Wood PJ,Scott FW,Riedel KD,Poste LM,Collins MW. Oat gum lowers glucose and insulin after an oral glucose loadAmerican Journal of Clinical NutritionYear: 1991536142514301852092
130. Marciani L,Gowland PA,Spiller RC,et al. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRIAmerican Journal of PhysiologyYear: 20012806G1227G123311352816
131. Darwiche G,Björgell O,Almér LO. The addition of locust bean gum but not water delayed the gastric emptying rate of a nutrient semisolid meal in healthy subjectsBMC GastroenterologyYear: 20033, article 12
132. Edwards CA,Johnson IT,Read NW. Do viscous polysaccharides slow absorption by inhibiting diffusion or convection?European Journal of Clinical NutritionYear: 19884243073122840277
133. Schneeman BO,Gallaher D. Effects of dietary fiber on digestive enzyme activity and bile acids in the small intestineProceedings of the Society for Experimental Biology and MedicineYear: 198518034094142417249
134. Eastwood MA,Morris ER. Physical properties of dietary fiber that influence physiological function: a model for polymers along the gastrointestinal tractAmerican Journal of Clinical NutritionYear: 19925524364421310375
135. Wood PJ,Weisz J,Blackwell BA. Structural studies of (1-3)(1-4)-B-D-glucans by 13C-NMR and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenaseCereal ChemistryYear: 199471301307
136. Nazare JA,Normand S,Triantafyllou AO,De La Perrière AB,Desage M,Laville M. Modulation of the postprandial phase by β-glucan in overweight subjects: effects on glucose and insulin kineticsMolecular Nutrition and Food ResearchYear: 200953336136918837470
137. Battilana P,Ornstein K,Minehira K,et al. Mechanisms of action of β-glucan in postprandial glucose metabolism in healthy menEuropean Journal of Clinical NutritionYear: 200155532733311378805
138. Cummings JH,Englyst HN. Fermentation in the human large intestine and the available substratesAmerican Journal of Clinical NutritionYear: 1987455124312553034048
139. Park KS,Ciaraldi TP,Lindgren K,et al. Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of peroxisome proliferator-activated receptor-γJournal of Clinical Endocrinology and MetabolismYear: 1998838283028359709955
140. Solà R,Bruckert E,Valls RM,et al. Soluble fibre (Plantago ovata husk) reduces plasma low-density lipoprotein (LDL) cholesterol, triglycerides, insulin, oxidised LDL and systolic blood pressure in hypercholesterolaemic patients: a randomised trialAtherosclerosisYear: 2010211263063720413122
141. Abumweis SS,Jew S,Ames NP. beta-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trialsEuropean Journal of Clinical NutritionYear: 201064121472148020924392
142. Chandalia M,Garg A,Lutjohann D,Von Bergmann K,Grundy SM,Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitusThe New England Journal of MedicineYear: 2000342191392139810805824
143. Solà R,Godàs G,Ribalta J,et al. Effects of soluble fiber (Plantago ovata husk) on plasma lipids, lipoproteins, and apolipoproteins in men with ischemic heart diseaseAmerican Journal of Clinical NutritionYear: 20078541157116317413119
144. Talati R,Baker WL,Pabilonia MS,White CM,Coleman CI. The effects of Barley-derived soluble fiber on serum lipidsAnnals of Family MedicineYear: 20097215716319273871
145. Asp NG,Mattsson B,Onning G. Variation in dietary fibre, β-glucan, starch, protein, fat and hull content of oats grown in Sweden 1987-1989European Journal of Clinical NutritionYear: 199246131371313758
146. Luhaloo M,Mårtensson A-C,Andersson R,Åman P. Compositional analysis and viscosity measurements of commercial oat bransJournal of the Science of Food and AgricultureYear: 199876142148
147. Drozdowski LA,Reimer RA,Temelli F,Bell RC,Vasanthan T,Thomson ABR. β-Glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in ratsJournal of Nutritional BiochemistryYear: 201021869570119716281
148. Delaney B,Nicolosi RJ,Wilson TA,et al. β-Glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamstersJournal of NutritionYear: 2003133246847512566485
149. Shimizu C,Kihara M,Aoe S,et al. Effect of high β-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men—a randomized, double-blinded, placebo-controlled trialPlant Foods for Human NutritionYear: 2008631212518074229
150. Behall KM,Scholfield DJ,Hallfrisch J. Lipids significantly reduced by diets containing Barley in moderately hypercholesterolemic menJournal of the American College of NutritionYear: 2004231556214963054
151. Behall KM,Scholfield DJ,Hallfrisch J. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and womenAmerican Journal of Clinical NutritionYear: 20048051185119315531664
152. Keogh GF,Cooper GJS,Mulvey TB,et al. Randomized controlled crossover study of the effect of a highly β-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic menAmerican Journal of Clinical NutritionYear: 200378471171814522728
153. Health Canada: Oat Products adn Blood Cholesterol Lowering, Summary of Assessment of a Health Claim about Oat Products and Blood Cholesterol Lowering, http://www.hc-sc.gc.ca/fn-an/alt_formats/pdf/label-etiquet/claims-reclam/assess-evalu/oat_avoine-eng.pdf.
154. Davidson MH,Dugan LD,Burns JH,Bova J,Story K,Drennan KB. The hypocholesterolemic effects of β-glucan in oatmeal and oat bran. A dose-controlled studyJournal of the American Medical AssociationYear: 199126514183318392005733
155. Reyna-Villasmil N,Bermúdez-Pirela V,Mengual-Moreno E,et al. Oat-derived β-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemiaAmerican Journal of TherapeuticsYear: 200714220321217414591
156. Queenan KM,Stewart ML,Smith KN,Thomas W,Fulcher RG,Slavin JL. Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trialNutrition JournalYear: 20076, article 6
157. Biörklund M,Holm J. Serum lipids and postprandial glucose and insulin levels in hyperlipidemic subjects after consumption of an oat β-glucan-containing ready mealAnnals of Nutrition and MetabolismYear: 2008522839018334815
158. Torronen R,Kansanen L,Uusitupa M,et al. Effects of an oat bran concentrate on serum lipids in free-living men with mild to moderate hypercholesterolaemiaEuropean Journal of Clinical NutritionYear: 19924696216271396480
159. Whyte JL,McArthur R,Topping D,Nestel P. Oat bran lowers plasma cholesterol levels in mildly hypercholesterolemic menJournal of the American Dietetic AssociationYear: 19929244464491313467
160. Poulter N,Choon Lan Chang,Cuff A,Poulter C,Sever P,Thom S. Lipid profiles after the daily consumption of an oat-based cereal: a controlled crossover trialAmerican Journal of Clinical NutritionYear: 199459166698279405
161. Lovegrove JA,Clohessy A,Milon H,Williams CM. Modest doses of β-glucan do not reduce concentrations of potentially atherogenic lipoproteinsAmerican Journal of Clinical NutritionYear: 2000721495510871560
162. Kerckhoffs DAJM,Hornstra G,Mensink RP. Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookiesAmerican Journal of Clinical NutritionYear: 200378222122712885701
163. Pomeroy S,Tupper R,Cehun-Aders M,Nestel P. Oat beta-glucan lowers total and LDL-cholesterolAustralian Journal of Nutrition and DieteticsYear: 2001585155
164. de Groot AP,Luyken R,Pikaar NA. Cholesterol-lowering effect of rolled oatsThe LancetYear: 19632827302303304
165. Kestin M,Moss R,Clifton PM,Nestel PJ. Comparative effects of three cereal brans on plasma lipids, blood pressure, and glucose metabolism in mildly hypercholesterolemic menAmerican Journal of Clinical NutritionYear: 19905246616662169702
166. Leadbetter J,Ball MJ,Mann JI. Effects of increasing quantities of oat bran in hypercholesterolemic peopleAmerican Journal of Clinical NutritionYear: 19915458418451659171
167. Bremer JM,Scott RS,Lintott CJ. Oat bran and cholesterol reduction: evidence against specific effectAustralian and New Zealand Journal of MedicineYear: 19912144224261659358
168. Trogh I,Courtin CM,Andersson AAM,Åman P,Sørensen JF,Delcour JA. The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1→3,1→4)-β-D-glucan levelsJournal of Cereal ScienceYear: 2004403257267
169. Burkus Z,Temelli F. Effect of extraction conditions on yield, composition, and viscosity stability of barley β-glucan gumCereal ChemistryYear: 1998756805809
170. Wood PJ,Weisz J,Mahn W. Molecular characterization of cereal β-glucans. II. Size-exclusion chromatography for comparison of molecular weightCereal ChemistryYear: 199168530536
171. Beer MU,Wood PJ,Weisz J. Molecular weight distribution and (1→3)(1→4)-β-D-glucan content of consecutive extracts of various oat and barley cultivarsCereal ChemistryYear: 1997744476480
172. Åman P,Rimsten L,Andersson R. Molecular weight distribution of β-glucan in oat-based foodsCereal ChemistryYear: 2004813356360
173. Lambo AM,Öste R,Nyman MEGL. Dietary fibre in fermented oat and barley β-glucan rich concentratesFood ChemistryYear: 2005892283293
174. Theuwissen E,Mensink RP. Water-soluble dietary fibers and cardiovascular diseasePhysiology and BehaviorYear: 200894228529218302966
175. Goel V,Cheema SK,Agellon LB,Ooraikul B,Basu TK. Dietary rhubarb (Rheum rhaponticum) stalk fibre stimulates cholesterol 7α-hydroxylase gene expression and bile acid excretion in cholesterol-fed C57BL/6J miceBritish Journal of NutritionYear: 1999811657110341678
176. Zhang JX,Hallmans G,Andersson H,et al. Effect of oat bran on plasma cholesterol and bile acid excretion in nine subjects with ileostomiesAmerican Journal of Clinical NutritionYear: 1992561991051319111
177. Dongowski G,Huth M,Gebhardt E. Steroids in the intestinal tract of rats are affected by dietary-fibre-rich barley-based dietsBritish Journal of NutritionYear: 200390589590614667183
178. Mälkki Y,Autio K,Hanninen O. Oat bran concentrates: physical properties of β-glucan and hypocholesterolemic effects in ratsCereal ChemistryYear: 199269647653
179. Lia A,Hallmans G,Sandberg AS,Sundberg B,Aman P,Andersson H. Oat β-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjectsAmerican Journal of Clinical NutritionYear: 1995626124512517491888
180. Marlett JA,Hosig KB,Vollendorf NW,Shinnick FL,Haack VS,Story JA. Mechanism of serum cholesterol reduction by oat branHepatologyYear: 1994206145014577982644
181. Hillman LC,Peters SG,Fisher CA,Pomare EW. Effects of the fibre components pectin, cellulose, and lignin on bile salt metabolism and biliary lipid composition in manGutYear: 198627129363005138
182. Lin Y,Vonk RJ,Slooff JH,Kuipers F,Smit MJ. Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary cultureBritish Journal of NutritionYear: 19957421972077547837
183. Wolever TMS,Fernandes J,Rao AV. Serum acetate:propionate ratio is related to serum cholesterol in men but not womenJournal of NutritionYear: 199612611279027978914950
184. Wolever TMS,Spadafora P,Eshuis H. Interaction between colonic acetate and propionate in humansAmerican Journal of Clinical NutritionYear: 19915336816872000822
185. Wolever TMS,Spadafora PJ,Cunnane SC,Pencharz PB. Propionate inhibits incorporation of colonic [1,2-13C]acetate into plasma lipids in humansAmerican Journal of Clinical NutritionYear: 1995616124112477762524
186. Wright RS,Anderson JW,Bridges SR. Propionate inhibits hepatocyte lipid synthesisProceedings of the Society for Experimental Biology and MedicineYear: 1990195126292399259
187. Bridges SR,Anderson JW,Deakins DA,Dillon DW,Wood CL. Oat bran increases serum acetate of hypercholesterolemic menAmerican Journal of Clinical NutritionYear: 19925624554591322034
188. Ebihara K,Schneeman BO. Interaction of bile acids, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of ratsJournal of NutritionYear: 19891198110011062550597
189. Liljeberg H,Björck I. Effects of a low-glycaemic index spaghetti meal on glucose tolerance and lipaemia at a subsequent meal in healthy subjectsEuropean Journal of Clinical NutritionYear: 2000541242810694768
190. Parks EJ. Dietary carbohydrate’s effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrationsBritish Journal of NutritionYear: 2002872S247S25312088525
191. Kok N,Roberfroid M,Delzenne N. Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolismMetabolismYear: 19964512154715508969290
192. Kok BYN,Roberfroid M,Robert A,Delzenne N. Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in ratsBritish Journal of NutritionYear: 19967668818909014656
193. Chobanian AV,Bakris GL,Black HR,et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 reportJournal of the American Medical AssociationYear: 2003289192560257212748199
194. Whelton SP,Hyre AD,Pedersen B,Yi Y,Whelton PK,He J. Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trialsJournal of HypertensionYear: 200523347548115716684
195. Jenkins DJA,Kendall CWC,Vuksan V,et al. Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trialAmerican Journal of Clinical NutritionYear: 200275583483911976156
196. Keenan JM,Pins JJ,Frazel C,Moran A,Turnquist L. Oat ingestion reduces systolic and diastolic blood pressure in patients with mild or borderline hypertension: a pilot trialThe Journal of Family PracticeYear: 2002514p. 369
197. He J,Streiffer RH,Muntner P,Krousel-Wood MA,Whelton PK. Effect of dietary fiber intake on blood pressure: a randomized, double-blind, placebo-controlled trialJournal of HypertensionYear: 2004221738015106797
198. Ferrannini E,Buzzigoli G,Bonadonna R. Insulin resistance in essential hypertensionThe New England Journal of MedicineYear: 198731763503573299096
199. Ferri C,Bellini C,Desideri G,et al. Relationship between insulin resistance and nonmodulating hypertension: linkage of metabolic abnormalities and cardiovascular riskDiabetesYear: 19994881623163010426382
200. Anderson TJ,Meredith IT,Yeung AC,Frei B,Selwyn AP,Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotionThe New England Journal of MedicineYear: 199533284884937830729
201. Vogel RA,Corretti MC,Plotnick GD. Changes in flow-mediated brachial artery vasoactivity with lowering of desirable cholesterol levels in healthy middle-aged menAmerican Journal of CardiologyYear: 199677137408540454
202. Crago MS,West SD,Hoeprich KD,Michaelis KJ,McKenzie JE. Effects of hyperlipidemia on blood pressure and coronary blood flow in swineThe FASEB JournalYear: 1998124p. A238
203. Neter JE,Stam BE,Kok FJ,Grobbee DE,Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trialsHypertensionYear: 200342587888412975389
204. Howarth NC,Saltzman E,Roberts SB. Dietary fiber and weight regulationNutrition ReviewsYear: 200159512913911396693
205. Rigaud D,Ryttig KR,Angel LA,Apfelbaum M. Overweight treated with energy restriction and a dietary fibre supplement: a 6-month randomized, double-blind, placebo-controlled trialInternational Journal of ObesityYear: 19901497637692172178
206. Birketvedt GS,Aaseth J,Florholmen JR,Ryttig K. Long-term effect of fibre supplement and reduced energy intake on body weight and blood lipids in overweight subjectsActa MedicaYear: 200043412913211294130
207. Pittler MH,Ernst E. Guar gum for body weight reduction: meta-analysis of randomized trialsAmerican Journal of MedicineYear: 2001110972473011403757
208. Mueller-Cunningham WM,Quintana R,Kasim-Karakas SE. An ad libitum, very low-fat diet results in weight loss and changes in nutrient intakes in postmenopausal womenJournal of the American Dietetic AssociationYear: 2003103121600160614647085
209. Hays NP,Starling RD,Liu X,et al. Effects of an Ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women: a randomized controlled trialArchives of Internal MedicineYear: 2004164221021714744846
210. Birketvedt GS,Shimshi M,Thom E,Florholmen J. Experiences with three different fiber supplements in weight reductionMedical Science MonitorYear: 2005111PI5PI815614200
211. Dikeman CL,Fahey GC. Viscosity as related to dietary fiber: a reviewCritical Reviews in Food Science and NutritionYear: 200646864966317092830
212. Kovacs EMR,Westerterp-Plantenga MS,Saris WHM,Goossens I,Geurten P,Brouns F. The effect of addition of modified guar gum to a low-energy semisolid meal on appetite and body weight lossInternational Journal of ObesityYear: 200125330731511319626
213. Raben A,Andersen K,Karberg MA,Holst JJ,Astrup A. Acetylation of or β-cyclodextrin addition to potato starch: beneficial effect on glucose metabolism and appetite sensationsAmerican Journal of Clinical NutritionYear: 19976623043149250108
214. Buckley JD,Thorp AA,Murphy KJ,Howe PRC. Dose-dependent inhibition of the post-prandial glycaemic response to a standard carbohydrate meal following incorporation of alpha-cyclodextrinAnnals of Nutrition and MetabolismYear: 200650210811416373993
215. Pasman W,Wils D,Saniez MH,Kardinaal A. Long-term gastrointestinal tolerance of NUTRIOSE FB in healthy menEuropean Journal of Clinical NutritionYear: 20066081024103416482066
216. Chow J,Choe YS,Noss MJ,et al. Effect of a viscous fiber-containing nutrition bar on satiety of patients with type 2 diabetesDiabetes Research and Clinical PracticeYear: 200776333534017023088
217. Schroeder N,Gallaher DD,Arndt EA,Marquart L. Influence of whole grain barley, whole grain wheat, and refined rice-based foods on short-term satiety and energy intakeAppetiteYear: 200953336336919643157
218. Granfeldt Y,Liljeberg H,Drews A,Newman R,Bjorck I. Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratioAmerican Journal of Clinical NutritionYear: 1994595107510828172094
219. Liljeberg HGM,Åkerberg AKE,Björck IME. Effect of the glycemic index and content of indigestible carbohydrates of cereal-based breakfast meals on glucose tolerance at lunch in healthy subjectsAmerican Journal of Clinical NutritionYear: 199969464765510197565
220. Kaplan RJ,Greenwood CE. Influence of dietary carbohydrates and glycaemic response on subjective appetite and food intake in healthy elderly personsInternational Journal of Food Sciences and NutritionYear: 200253430531612090026
221. Rytter E,Erlanson-Albertsson C,Lindahl L,et al. Changes in plasma insulin, enterostatin, and lipoprotein levels during an energy-restricted dietary regimen including a new oat-based liquid foodAnnals of Nutrition and MetabolismYear: 19964042122208886249
222. Lyly M,Liukkonen KH,Salmenkallio-Marttila M,Karhunen L,Poutanen K,Lähteenmäki L. Fibre in beverages can enhance perceived satietyEuropean Journal of NutritionYear: 200948425125819306033
223. Vitaglione P,Lumaga RB,Stanzione A,Scalfi L,Fogliano V. β-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short termAppetiteYear: 200953333834419631705
224. Saltzman E,Moriguti JC,Das SK,et al. Effects of a cereal rich in soluble fiber on body composition and dietary compliance during consumption of a hypocaloric dietJournal of the American College of NutritionYear: 2001201505711293468
225. Kim H,Behall KM,Vinyard B,Conway JM. Short-term satiety and glycemic response after consumption of whole grains with various amounts of β-glucanCereal Foods WorldYear: 20065112933
226. Peters HPF,Boers HM,Haddeman E,Melnikov SM,Qvyjt F. No effect of added β-glucan or of fructooligosaccharide on appetite or energy intakeAmerican Journal of Clinical NutritionYear: 2009891586319056555
227. Lyly M,Ohls N,Lähteenmäki L,et al. The effect of fibre amount, energy level and viscosity of beverages containing oat fibre supplement on perceived satietyFood and Nutrition ResearchYear: 201054118
228. Vitaglione P,Lumaga RB,Montagnese C,Messia MC,Marconi E,Scalfi L. Satiating effect of a barley beta-glucan-enriched snackJournal of the American College of NutritionYear: 201029211312120679146
229. Burkus Z,Temelli F. Determination of the molecular weight of barley β-glucan using intrinsic viscosity measurementsCarbohydrate PolymersYear: 20035415157
230. Lazaridou A,Biliaderis CG,Izydorczyk MS. Cereal beta-glucans: structures, physical properties, and physiological functionsFunction Food CarbohydratesYear: 2007Boca Raton, Fla, USACRC Press
231. Beer MU,Wood PJ,Weisz J,Fillion N. Effect of cooking and storage on the amount and molecular weight of (1→3)(1→4)-β-D-glucan extracted from oat products by an in vitro digestion systemCereal ChemistryYear: 1997746705709
232. Kirkmeyer SV,Mattes RD. Effects of food attributes on hunger and food intakeInternational Journal of ObesityYear: 20002491167117511033986
233. Pick ME,Hawrysh ZJ,Gee MI,Toth E,Garg ML,Hardin RT. Oat bran concentrate bread products improve long-term control of diabetes: a pilot studyJournal of the American Dietetic AssociationYear: 19969612125412618948386
234. Beck EJ,Tapsell LC,Batterham MJ,Tosh SM,Huang XF. Oat β-glucan supplementation does not enhance the effectiveness of an energy-restricted diet in overweight womenBritish Journal of NutritionYear: 201010381212122219930764
235. Burton-Freeman B. Dietary fiber and energy regulationJournal of NutritionYear: 20001302, supplement272S275S10721886
236. Mattes RD,Rothacker D. Beverage viscosity is inversely related to postprandial hunger in humansPhysiology and BehaviorYear: 2001744-555155711790415
237. Zijlstra N,Mars M,De Wijk RA,Westerterp-Plantenga MS,De Graaf C. The effect of viscosity on ad libitum food intakeInternational Journal of ObesityYear: 200832467668318071342
238. Rigaud D,Paycha F,Meulemans A,Merrouche M,Mignon M. Effect of psyllium on gastric emptying, hunger feeling and food intake in normal volunteers: a double blind studyEuropean Journal of Clinical NutritionYear: 19985242392459578335
239. Isaksson G,Lundquist I,Ihse I. Effect of dietary fiber on pancreatic enyzme in vitroGastroenterologyYear: 19828259189246174390
240. Juvonen KR,Purhonen AK,Salmenkallio-Marttila M,et al. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humansJournal of NutritionYear: 2009139346146619176745
241. Ellis PR,Dawoud FM,Morris ER. Blood glucose, plasma insulin and sensory responses to guar-containing wheat breads: effects of molecular weight and particle size of guar gumBritish Journal of NutritionYear: 19916633633791663391
242. De Graaf C,De Jong LS,Lambers AC. Palatability affects satiation but not satietyPhysiology and BehaviorYear: 199966468168810386914
243. Berg C,Jonsson I,Conner M,Lissner L. Perceptions and reasons for choice of fat-and fibre-containing foods by Swedish schoolchildrenAppetiteYear: 2003401616712631506
244. Holt SHA,Brand Miller JC,Petocz P,Farmakalidis E. A satiety index of common foodsEuropean Journal of Clinical NutritionYear: 19954996756907498104
245. Mårtensson O,Biörklund M,Lambo AM,et al. Fermented, ropy, oat-based products reduce cholesterol levels and stimulate the bifidobacteria flora in humansNutrition ResearchYear: 2005255429442
246. Holt S,Brand J,Soveny C,Hansky J. Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responsesAppetiteYear: 19921821291411610161
247. Holt SHA,Miller JB. Increased insulin responses to ingested foods are associated with lessened satietyAppetiteYear: 199524143547741535
248. Anderson GH,Catherine NLA,Woodend DM,Wolever TMS. Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young menAmerican Journal of Clinical NutritionYear: 20027651023103012399274
249. Stewart SL,Black RM,Wolever TMS,Anderson GH. The relationship between the glycaemic response to breakfast cereals and subjective appetite and food intakeNutrition ResearchYear: 199717812491260
250. Anderson GH,Woodend D. Effect of glycemic carbohydrates on short-term satiety and food intakeNutrition ReviewsYear: 2003615S17S2612828188
251. Cummings JH,Pomare EW,Branch WJ,Naylor CPE,Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous bloodGutYear: 19872810122112273678950
252. Roediger WEW. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in manGutYear: 19802197937987429343
253. Hong YH,Nishimura Y,Hishikawa D,et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43EndocrinologyYear: 2005146125092509916123168
254. Sleeth ML,Thompson EL,Ford HE,Zac-Varghese SEK,Frost G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulationNutrition Research ReviewsYear: 201023113514520482937
255. Hamer HM,Jonkers D,Venema K,Vanhoutvin S,Troost FJ,Brummer RJ. Review article: the role of butyrate on colonic functionAlimentary Pharmacology and TherapeuticsYear: 200827210411917973645
256. Kendall PE,McLeay LM. Excitatory effects of volatile fatty acids on the in vitro motility of the rumen of sheepResearch in Veterinary ScienceYear: 1996611168819185
257. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various speciesPhysiological ReviewsYear: 19907025675902181501
258. Dass NB,John AK,Bassil AK,et al. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activationNeurogastroenterology and MotilityYear: 2007191667417187590
259. Tazoe H,Otomo Y,Kaji I,Tanaka R,Karaki SI,Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functionsJournal of Physiology and PharmacologyYear: 200859225126218812643
260. Cherbut C. Cummings JH,Rombeau JL,Sakata TEffects of short-chain fatty acids on gastrointestinal motilityPhysiological and Clinical Aspects of Short-Chain Fatty AcidsYear: 1995Cambridge, UKCambridge University Press
261. Berger M,Gray JA,Roth BL. The expanded biology of serotoninAnnual Review of MedicineYear: 200960355366
262. Kim DY,Camilleri M. Serotonin: a mediator of the brain-gut connectionAmerican Journal of GastroenterologyYear: 2000951027042709
263. Zhu JX,Wu XY,Owyang C,Li Y. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the ratJournal of PhysiologyYear: 2001530343144211158274
264. Fukumoto S,Tatewaki M,Yamada T,et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in ratsAmerican Journal of PhysiologyYear: 20032845R1269R127612676748
265. Dumoulin V,Moro F,Barcelo A,Dakka T,Cuber JC. Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileumEndocrinologyYear: 19981399378037869724030
266. Tatemoto K,Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptidesNatureYear: 198028557644174186892950
267. Eberlein GA,Eysselein VE,Schaeffer M,et al. A new molecular form of PYY: structural characterization of human PYY(3-36) and PYY(1-36)PeptidesYear: 19891047978032587421
268. Adrian TE,Ferri GL,Bacarese-Hamilton AJ. Human distribution and release of a putative new gut hormone, peptide YYGastroenterologyYear: 1985895107010773840109
269. Batterham RL,Cowley MA,Small CJ,et al. Gut hormone PYY3-36 physiologically inhibits food intakeNatureYear: 2002418689865065412167864
270. Batterham RL,Cohen MA,Ellis SM,et al. Inhibition of food intake in obese subjects by peptide YY3-36The New England Journal of MedicineYear: 20033491094194812954742
271. Karhunen LJ,Juvonen KR,Flander SM,et al. A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adultsJournal of NutritionYear: 2010140473774420147463
272. Reimer RA,Pelletier X,Carabin IG,et al. Increased plasma PYY levels following supplementation with the functional fiber PolyGlycopleX in healthy adultsEuropean Journal of Clinical NutritionYear: 201064101186119120664618
273. Parnell JA,Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adultsAmerican Journal of Clinical NutritionYear: 20098961751175919386741
274. Beck EJ,Tapsell LC,Batterham MJ,Tosh SM,Huang XF. Increases in peptide Y-Y levels following oat beta-glucan ingestion are dose-dependent in overweight adultsNutrition ResearchYear: 2009291070570919917449
275. Longo WE,Ballantyne GH,Savoca PE,Adrian TE,Bilchik AJ,Modlin IM. Short-chain fatty acid release of peptide YY in the isolated rabbit distal colonScandinavian Journal of GastroenterologyYear: 19912644424482034997
276. Cherbut C,Ferrier L,Rozé C,et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the ratAmerican Journal of PhysiologyYear: 19982756G1415G14229843779
277. Karaki SI,Mitsui R,Hayashi H,et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestineCell and Tissue ResearchYear: 2006324335336016453106
278. Holst JJ. The physiology of glucagon-like peptide 1Physiological ReviewsYear: 20078741409143917928588
279. Elliott RM,Morgan LM,Tredger JA,Deacon S,Wright J,Marks V. Glucagon-like peptide-1(7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patternsJournal of EndocrinologyYear: 199313811591667852887
280. Turton MD,O’Shea D,Gunn I,et al. A role for glucagon-like peptide-1 in the central regulation of feedingNatureYear: 1996379656069728538742
281. Davis HR,Mnllins DE,Pines JM,et al. Effect of chronic central administration of glucagon-like peptide-1 (7-36) amide on food consumption and body weight in normal and obese ratsObesity ResearchYear: 1998621471569545022
282. Verdich C,Flint A,Gutzwiller JP,et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on Ad Libitum energy intake in humansJournal of Clinical Endocrinology and MetabolismYear: 20018694382438911549680
283. Cani PD,Hoste S,Guiot Y,Delzenne NM. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of ratsBritish Journal of NutritionYear: 2007981323717367575
284. Adam TCM,Westerterp-Plantenga MS. Nutrient-stimulated GLP-1 release in normal-weight men and womenHormone and Metabolic ResearchYear: 200537211111715778929
285. Raben A,Tagliabue A,Christensen NJ,Madsen J,Holst JJ,Astrup A. Resistant starch: the effect on postprandial glycemia, hormonal response, and satietyAmerican Journal of Clinical NutritionYear: 19946045445518092089
286. Frost GS,Brynes AE,Dhillo WS,Bloom SR,McBurney MI. The effects of fiber enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a mealEuropean Journal of Clinical NutritionYear: 200357229329812571662
287. Massimino SP,McBurney MI,Field CJ,et al. Fermentable dietary fiber increases GLP-1 secretion and improves glucose homeostasis despite increased intestinal glucose transport capacity in healthy dogsJournal of NutritionYear: 199812810178617939772150
288. Cani PD,Dewever C,Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in ratsBritish Journal of NutritionYear: 200492352152615469657
289. Delzenne NM,Cani PD,Daubioul C,Neyrinck AM. Impact of inulin and oligofructose on gastrointestinal peptidesBritish Journal of NutritionYear: 200593S157S16115877889
290. Keenan MJ,Zhou J,McCutcheon KL,et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fatObesityYear: 20061491523153417030963
291. Delmée E,Cani PD,Gual G,et al. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed miceLife SciencesYear: 200679101007101316757002
292. Zhou J,Hegsted M,McCutcheon KL,et al. Peptide YY and proglucagon mRNA expression patterns and regulation in the gutObesityYear: 200614468368916741270
293. Zhou J,Martin RJ,Tulley RT,et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodentsAmerican Journal of PhysiologyYear: 20082955E1160E116618796545
294. Piche T,Des Varannes SB,Sacher-Huvelin S,Holst JJ,Cuber JC,Galmiche JP. Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux diseaseGastroenterologyYear: 2003124489490212671885
295. Greenway F,O’Neil CE,Stewart L,Rood J,Keenan M,Martin R. Fourteen weeks of treatment with Viscofiber increased fasting levels of glucagon-like peptide-1 and peptide-YYJournal of Medicinal FoodYear: 200710472072418158848
296. Cani PD,Lecourt E,Dewulf EM,et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a mealAmerican Journal of Clinical NutritionYear: 20099051236124319776140
297. Gee JM,Johnson IT. Dietary lactitol fermentation increases circulating peptide YY and glucagon-like peptide-1 in rats and humansNutritionYear: 200521101036104316157241
298. Frost G,Brynes A,Leeds A. Effect of large bowel fermentation on insulin, glucose, free fatty acids, and glucagon-like peptide 1 (7-36) amide in patients with coronary heart diseaseNutritionYear: 199915318318810198911
299. May T,Mackie RI,Fahey GC,Cremin JC,Garleb KA. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by clostridium difficileScandinavian Journal of GastroenterologyYear: 199429109169227839098
300. Gibbs J,Young RC,Smith GP. Cholecystokinin decreases food intake in ratsJournal of Comparative and Physiological PsychologyYear: 19738434884954745816
301. Liddle RA,Goldfine ID,Rosen MS. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contractionJournal of Clinical InvestigationYear: 1985754114411522580857
302. Kissileff HR,Pi-Sunyer FX,Thornton J,Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in manAmerican Journal of Clinical NutritionYear: 19813421541606259918
303. Burton-Freeman B,Davis PA,Schneeman BO. Plasma cholecystokinin is associated with subjective measures of satiety in womenAmerican Journal of Clinical NutritionYear: 200276365966712198015
304. Heini AF,Lara-Castro C,Schneider H,Kirk KA,Considine RV,Weinsier RL. Effect of hydrolyzed guar fiber on fasting and postprandial satiety and satiety hormones: a double-blind, placebo-controlled trial during controlled weight lossInternational Journal of ObesityYear: 19982299069099756250
305. Bourdon I,Olson B,Backus R,Richter BD,Davis PA,Schneeman BO. Beans, as a source of dietary fiber, increase cholecystokinin and apolipoprotein B48 response to test meals in menJournal of NutritionYear: 200113151485149011340104
306. Sileikiene V,Mosenthin R,Bauer E,et al. Effect of ileal infusion of short-chain fatty acids on pancreatic prandial secretion and gastrointestinal hormones in pigsPancreasYear: 200837219620218665083
307. Kojima M,Hosoda H,Date Y,Nakazato M,Matsuo H,Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomachNatureYear: 1999402676265666010604470
308. Cummings DE,Purnell JQ,Frayo RS,Schmidova K,Wisse BE,Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humansDiabetesYear: 20015081714171911473029
309. Tschop M,Smiley DL,Heiman ML. Ghrelin induces adiposity in rodentsNatureYear: 2000407680690891311057670
310. Nakazato M,Murakami N,Date Y,et al. A role for ghrelin in the central regulation of feedingNatureYear: 2001409681719419811196643
311. Nedvídková J,Krykorková I,Barták V,et al. Loss of meal-induced decrease in plasma ghrelin levels in patients with anorexia nervosaJournal of Clinical Endocrinology and MetabolismYear: 20038841678168212679456
312. Erdmann J,Lippl F,Schusdziarra V. Differential effect of protein and fat on plasma ghrelin levels in manRegulatory PeptidesYear: 20031161–310110714599721
313. Karhunen LJ,Flander S,Liukkonen KH,et al. Fiber effectively inhibits postprandial decrease in plasma ghrelin concentrationAbstract Obesity ReviewsYear: 20056p. 59
314. Möhlig M,Koebnick C,Weickert MO,et al. Arabinoxylan-enriched meal increases serum ghrelin levels in healthy humansHormone and Metabolic ResearchYear: 200537530330815971154
315. Tarini J,Wolever TMS. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjectsApplied Physiology, Nutrition and MetabolismYear: 2010351916
316. Sloth B,Davidsen L,Holst JJ,Flint A,Astrup A. Effect of subcutaneous injections of PYY1-36 and PYY 3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese malesAmerican Journal of PhysiologyYear: 20072932E604E60917566112
317. Hagander B,Asp NG,Efendic S. Reduced glycemic response to beet-fibre meal in non-insulin-dependent diabetics and its relation to plasma levels of pancreatic and gastrointestinal hormonesDiabetes ResearchYear: 19863291963009077
318. Shimada M,Date Y,Mondal MS,et al. Somatostatin suppresses ghrelin secretion from the rat stomachBiochemical and Biophysical Research CommunicationsYear: 2003302352052512615065
319. Nørrelund H,Hansen TK,Ørskov H,et al. Ghrelin immunoreactivity in human plasma is suppressed by somatostatinClinical EndocrinologyYear: 200257453954612354137
320. Lippl F,Kircher F,Erdmann J,Allescher HD,Schusdziarra V. Effect of GIP, GLP-1, insulin and gastrin on ghrelin release in the isolated rat stomachRegulatory PeptidesYear: 20041191-2939815093702
321. Mälkki Y,Virtanen E. Gastrointestinal effects of oat bran and oat gum a reviewLebensmittel-Wissenschaft TechnologieYear: 2001346337347
322. Lanza E,Jones DY,Block G,Kessler L. Dietary fiber intake in the US populationAmerican Journal of Clinical NutritionYear: 19874657907972823592
323. Anderson JW,Bridges SR,Tietyen J,Gustafson NJ. Dietary fiber content of a simulated American diet and selected research dietsAmerican Journal of Clinical NutritionYear: 19894923523572537004
324. Tillotson JL,Bartsch GE,Gorder D,Grandits GA,Stamler J. Food group and nutrient intakes at baseline in the Multiple Risk Factor Intervention TrialAmerican Journal of Clinical NutritionYear: 1997651228S257S8988940
325. Hallfrisch J,Tobin JD,Muller DC,Andres R. Fiber intake, age, and other coronary risk factors in men of the Baltimore Longitudinal Study (1959–1975)Journals of GerontologyYear: 1988433M64M682834432
326. Hermann JR,Hanson CF,Kopel BH. Fiber intake of older adults: relationship to mineral intakesJournal of Nutrition for the ElderlyYear: 199211421331338340
327. Nova Scotia Department of Health, Report of the Nova Scotia Nutrition Survey, 1993.
328. Schenkel TC,Stockman NKA,Brown JN,Duncan AM. Evaluation of energy, nutrient and dietary fiber intakes of adolescent malesJournal of the American College of NutritionYear: 200726326427117634172
329. Bagheri SM,Debry G. Evaluation of average daily consumption of dietary fiber in FranceAnnals of Nutrition and MetabolismYear: 199034269752164344
330. Arbman G,Axelson O,Ericsson-Begodzki AB,Fredriksson M,Nilsson E,Sjodahl R. Cereal fiber, calcium, and colorectal cancerCancerYear: 1992698204220481311977
331. Virtanen SM,Varo P. Dietary fibre and fibre fractions in the diet of Finnish diabetic and non-diabetic adolescentsEuropean Journal of Clinical NutritionYear: 19884221691752837388
332. Pechanek U,Pfannhauser W. Examples of the fiber content of foods todayZeitschrift fur die Gesamte Innere Medizin und Ihre GrenzgebieteYear: 199146134864901660213
333. Hulshof KFAM,Lowik MRH,Kistemaker C,Hermus RJJ,Ten Hoor F,Ockhuizen T. Comparison of dietary intake data with guidelines: some potential pitfalls (Dutch nutrition surveillance system)Journal of the American College of NutritionYear: 19931221761858385165
334. Beer-Borst S,Wellauer-Weber B,Amado R. Dietary fiber intake of a Swiss collective interested in nutritionZeitschrift fur ErnahrungswissenschaftYear: 199433168788197790
335. Emmett PM,Symes CL,Heaton KW. Dietary intake and sources of non-starch polysaccharide in English men and womenEuropean Journal of Clinical NutritionYear: 199347120308380767
336. Tarrega A,Costell E. Effect of composition on the rheological behaviour and sensory properties of semisolid dairy dessertFood HydrocolloidsYear: 2006206914922
337. Tárrega A,Costell E. Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy dessertsInternational Dairy JournalYear: 200616911041112
338. Villegas B,Costell E. Flow behaviour of inulin-milk beverages. Influence of inulin average chain length and of milk fat contentInternational Dairy JournalYear: 2007177776781
339. Akalin AS,Karagözlü C,Ünal G. Rheological properties of reduced-fat and low-fat ice cream containing whey protein isolate and inulinEuropean Food Research and TechnologyYear: 20082273889895
340. Aykan V,Sezgin E,Guzel-Seydim ZB. Use of fat replacers in the production of reduced-calorie vanilla ice creamEuropean Journal of Lipid Science and TechnologyYear: 20081106516520
341. Karaca OB,Güven M,Yasar K,Kaya S,Kahyaoglu T. The functional, rheological and sensory characteristics of ice creams with various fat replacersInternational Journal of Dairy TechnologyYear: 20096219399
342. Lazaridou A,Biliaderis CG,Micha-Screttas M,Steele BR. A comparative study on structure-function relations of mixed-linkage (1→3), (1→4) linear β-D-glucansFood HydrocolloidsYear: 2004185837855
343. Lee S,Inglett GE,Palmquist D,Warner K. Flavor and texture attributes of foods containing β-glucan-rich hydrocolloids from oatsLebensmittel-Wissenschaft TechnologieYear: 2009421350357
344. Hunter KW,Gault RA,Berner MD. Preparation of microparticulate β-glucan from Saccharomyces cerevisiae for use in immune potentiationLetters in Applied MicrobiologyYear: 200235426727112358685
345. Kalinga D,Mishra VK. Rheological and physical properties of low fat cakes produced by addition of cereal β-glucan concentratesJournal of Food Processing and PreservationYear: 2009333384400
346. Tiwari U,Cummins E. Factors influencing β-glucan levels and molecular weight in cereal-based productsCereal ChemistryYear: 2009863290301
347. Saarela M,Virkajärvi I,Nohynek L,Vaari A,Mättö J. Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cerealsInternational Journal of Food MicrobiologyYear: 2006112217117816844253
348. Gormley TR,Morrissey A. A note on the evaluation of wheaten breads containing oat flour or oat flakesIrish Journal of Agricultural and Food ResearchYear: 199932205209
349. Inglett GE,Peterson SC,Carriere CJ,Maneepun S. Rheological, textural, and sensory properties of Asian noodles containing an oat cereal hydrocolloidFood ChemistryYear: 2005901-218
350. Fernández-García E,McGregor JU,Traylor S. The addition of oat fiber and natural alternative sweeteners in the manufacture of plain yogurtJournal of Dairy ScienceYear: 19988136556639565867
351. Konuklar G,Inglett GE,Warner K,Carriere CJ. Use of a β-glucan hydrocolloidal suspension in the manufacture of low-fat Cheddar cheeses: textural properties by instrumental methods and sensory panelsFood HydrocolloidsYear: 2004184535545
352. Volikakis P,Biliaderis CG,Vamvakas C,Zerfiridis GK. Effects of a commercial oat-β-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese productFood Research InternationalYear: 20043718394
353. Angelov A,Gotcheva V,Kuncheva R,Hristozova T. Development of a new oat-based probiotic drinkInternational Journal of Food MicrobiologyYear: 20061121758016854486
354. Mårtensson O,Andersson C,Andersson K,Öste R,Holst O. Formulation of an oat-based fermented product and its comparison with yoghurtJournal of the Science of Food and AgricultureYear: 2001811413141321
355. Troy DJ,Desmond EM,Buckley DJ. Eating quality of low-fat beef burgers containing fat-replacing functional blendsJournal of the Science of Food and AgricultureYear: 1999794507516
356. Hughes E,Cofrades S,Troy DJ. Effects of fat level, oat fibre and carrageenan on frankfurters formulated with 5, 12 and 30% fatMeat ScienceYear: 199745327328122061466
357. Hilliam M. Future for dairy products and ingredients in the functional foods marketAustralian Journal of Dairy TechnologyYear: 200358298103
358. Thebaudin JY,Lefebvre AC,Harrington M,Bourgeois CM. Dietary fibres: nutritional and technological interestTrends in Food Science and TechnologyYear: 1997824148
359. Dello Staffolo M,Bertola N,Martino M,Bevilacqua A. Influence of dietary fiber addition on sensory and rheological properties of yogurtInternational Dairy JournalYear: 2004143263268
360. Johansson L,Tuomainen P,Anttila H,Rita H,Virkki L. Effect of processing on the extractability of oat β-glucanFood ChemistryYear: 2007105414391445
361. Tosh SM,Brummer Y,Wolever TMS,Wood PJ. Glycemic response to oat bran muffins treated to vary molecular weight of β-glucanCereal ChemistryYear: 2008852211217
362. Regand A,Tosh SM,Wolever TM,Wood PJ. Physicochemical properties of glucan in differently processed oat foods influence glycemie responseJournal of Agricultural and Food ChemistryYear: 200957198831883819728711
363. Degutyte-Fomins L,Sontag-Strohm T,Salovaara H. Oat bran fermentation by rye sourdoughCereal ChemistryYear: 2002793345348
364. Andersson AAM,Rüegg N,Åman P. Molecular weight distribution and content of water-extractable β-glucan in rye crisp breadJournal of Cereal ScienceYear: 2008473399406
365. Andersson AAM,Armö E,Grangeon E,Fredriksson H,Andersson R,Åman P. Molecular weight and structure units of (1→3, 1→4)-β-glucans in dough and bread made from hull-less barley milling fractionsJournal of Cereal ScienceYear: 2004403195204
366. Frank J,Sundberg B,Kamal-Eldin A,Vessby B,Åman P. Yeast-leavened oat breads with high or low molecular weight β-glucan do not differ in their effects on blood concentrations of lipids, insulin, or glucose in humansJournal of NutritionYear: 200413461384138815173400
367. Lan-Pidhainey X. The physiochemical properties of oat B-glucan and its ability to attenuate postprandial glycaemic responseYear: 2006Department of Nutritional Sciences, University of Toronto, Canada M.S. thesis.
368. Institute of Medicine: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (Macronutrients), http://www.nap.edu/openbook.php?isbn=0309085373.
369. Health and Welfare Canada, Report of the expert advisory committee on dietary fibre, 1985.
370. Health Canada, Guideline concerning the safety and physiological effects of Novel fibre sources and food products containing them, 1988.
371. European Food Safety AuthorityOutcome of the public consultation on the draft opinion of the scientific panel on dietetic products, nutrition and allergies (NDA) on dietary reference values for carbohydrates and dietary fibreEFSA JournalYear: 201085p. 1508
372. FSANZ: Food Standards Code, Standard 1.2.8: Nutrition Information Requirements, http://www.foodstandards.gov.au/foodstandards/foodstandardscode.cfm.
373. Health Canada: Proposed Policy: Definition and Energy Value for Dietary Fibre, http://www.hc-sc.gc.ca/fn-an/consult/fibre-fibres/consul-fibre-fibres-eng.php.

Article Categories:
  • Review Article


Previous Document:  Healthy Eating Index and Alternate Healthy Eating Index among Haitian Americans and African American...
Next Document:  FDG-PET Quantification of Lung Inflammation with Image-Derived Blood Input Function in Mice.