Document Detail


Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior.
MedLine Citation:
PMID:  21506946     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Parameters in time series and other dynamic models often show complex range restrictions and their distributions may deviate substantially from multivariate normal or other standard parametric distributions. We use the truncated Dirichlet process (DP) as a non-parametric prior for such dynamic parameters in a novel nonlinear Bayesian dynamic factor analysis model. This is equivalent to specifying the prior distribution to be a mixture distribution composed of an unknown number of discrete point masses (or clusters). The stick-breaking prior and the blocked Gibbs sampler are used to enable efficient simulation of posterior samples. Using a series of empirical and simulation examples, we illustrate the flexibility of the proposed approach in approximating distributions of very diverse shapes.
Authors:
Sy-Miin Chow; Niansheng Tang; Ying Yuan; Xinyuan Song; Hongtu Zhu
Related Documents :
10972286 - Changes in greenland ice sheet elevation attributed primarily to snow accumulation vari...
19643746 - Estimation of postfire nutrient loss in the florida everglades.
21237756 - What causes population cycles of forest lepidoptera?
21533156 - A quantitative model of honey bee colony population dynamics.
20732816 - Can the reliability of three-dimensional running kinematics be improved using functiona...
24352956 - Variation among sows in response to porcine reproductive and respiratory syndrome.
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.    
Journal Detail:
Title:  The British journal of mathematical and statistical psychology     Volume:  64     ISSN:  0007-1102     ISO Abbreviation:  Br J Math Stat Psychol     Publication Date:  2011 Feb 
Date Detail:
Created Date:  2011-04-21     Completed Date:  2011-06-21     Revised Date:  2014-09-21    
Medline Journal Info:
Nlm Unique ID:  0004047     Medline TA:  Br J Math Stat Psychol     Country:  England    
Other Details:
Languages:  eng     Pagination:  69-106     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Affect
Bayes Theorem*
Factor Analysis, Statistical*
Female
Humans
Individuality
Infant, Newborn
Male
Nonlinear Dynamics*
Probability
Psychology / statistics & numerical data*
Psychometrics / statistics & numerical data
Statistics, Nonparametric
Stochastic Processes*
Young Adult
Grant Support
ID/Acronym/Agency:
AG033387/AG/NIA NIH HHS; MH086633/MH/NIMH NIH HHS; P01 CA142538/CA/NCI NIH HHS; P01CA142538-01/CA/NCI NIH HHS; R01 MH086633/MH/NIMH NIH HHS; R21 AG033387/AG/NIA NIH HHS; UL1-RR025747-01/RR/NCRR NIH HHS
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Decision making on ambiguous stimuli such as prosody by subjects suffering from paranoid schizophren...
Next Document:  Ridge structural equation modelling with correlation matrices for ordinal and continuous data.