Document Detail

Bayesian dynamic regression models for interval censored survival data with application to children dental health.
MedLine Citation:
PMID:  23389549     Owner:  NLM     Status:  Publisher    
Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on event times, which could be hidden from a Cox proportional hazards model. Methodology development for varying coefficient Cox models, however, has been largely limited to right censored data; only limited work on interval censored data has been done. In most existing methods for varying coefficient models, analysts need to specify which covariate coefficients are time-varying and which are not at the time of fitting. We propose a dynamic Cox regression model for interval censored data in a Bayesian framework, where the coefficient curves are piecewise constant but the number of pieces and the jump points are covariate specific and estimated from the data. The model automatically determines the extent to which the temporal dynamics is needed for each covariate, resulting in smoother and more stable curve estimates. The posterior computation is carried out via an efficient reversible jump Markov chain Monte Carlo algorithm. Inference of each coefficient is based on an average of models with different number of pieces and jump points. A simulation study with three covariates, each with a coefficient of different degree in temporal dynamics, confirmed that the dynamic model is preferred to the existing time-varying model in terms of model comparison criteria through conditional predictive ordinate. When applied to a dental health data of children with age between 7 and 12 years, the dynamic model reveals that the relative risk of emergence of permanent tooth 24 between children with and without an infected primary predecessor is the highest at around age 7.5, and that it gradually reduces to one after age 11. These findings were not seen from the existing studies with Cox proportional hazards models.
Xiaojing Wang; Ming-Hui Chen; Jun Yan
Related Documents :
23017699 - Comparative modeling approaches for understanding urban violence.
24198579 - Analysis of ultra-triathlon performances.
25023919 - Risk prediction models to predict emergency hospital admission in community-dwelling ad...
16664709 - Compartmental efflux analysis: an evaluation of the technique and its limitations.
16104009 - The impact of partial-volume effects in dynamic susceptibility contrast magnetic resona...
24911779 - Social foraging with partial (public) information.
22574139 - Estimation of activity related energy expenditure and resting metabolic rate in freely ...
23017699 - Comparative modeling approaches for understanding urban violence.
23040059 - Gaze fluctuations are not additively decomposable: reply to bogartz and staub.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-2-7
Journal Detail:
Title:  Lifetime data analysis     Volume:  -     ISSN:  1572-9249     ISO Abbreviation:  Lifetime Data Anal     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-2-7     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9516348     Medline TA:  Lifetime Data Anal     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Google, New York, NY, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b.
Next Document:  Sequence and phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea virus (PEDV) s...