Document Detail

Bayesian analysis of case-control studies.
MedLine Citation:
PMID:  3231946     Owner:  NLM     Status:  MEDLINE    
A Bayesian approach to the estimation of an odds ratio from case-control data is considered. The exact posterior density of the odds ratio and its moments are derived. A log-normal approximation to the density is shown to be adequate for practical purposes. Mechanisms for setting prior parameters are discussed and some examples are presented.
R J Marshall
Related Documents :
19324616 - Maternal effects mechanism of population cycling: a formidable competitor to the tradit...
16191626 - From patterns to processes and back: analysing density-dependent responses to an abioti...
18623606 - Estimating local and global measures of association for bivariate interval censored dat...
22925956 - An appraisal of the literature on teaching physical examination skills.
2363496 - An improved method for the analysis of data from radiation-inactivation studies.
14620066 - A review of us anthropometric reference data (1971-2000) with comparisons to both styli...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Statistics in medicine     Volume:  7     ISSN:  0277-6715     ISO Abbreviation:  Stat Med     Publication Date:  1988 Dec 
Date Detail:
Created Date:  1989-04-20     Completed Date:  1989-04-20     Revised Date:  2004-11-17    
Medline Journal Info:
Nlm Unique ID:  8215016     Medline TA:  Stat Med     Country:  ENGLAND    
Other Details:
Languages:  eng     Pagination:  1223-30     Citation Subset:  IM    
Department of Community Health, University of Auckland, New Zealand.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Bayes Theorem*
Epidemiologic Methods*
Comment In:
Stat Med. 1989 Aug;8(8):1023-4   [PMID:  2610758 ]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Inborn/outborn status and neonatal survival: a meta-analysis of non-randomized studies.
Next Document:  Stopping rules and estimation problems in clinical trials.