Document Detail


Bactericidal effects of hematoporphyrin monomethyl ether-mediated photosensitization against pathogenic communities from supragingival plaque.
MedLine Citation:
PMID:  23615742     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Photodynamic antimicrobial chemotherapy (PACT) is proposed as a potential candidate to inactivate pathogens in localized infections due to the rapid evolution of bacterial resistance. The treatment modality utilizes nontoxic agents called photosensitizers and harmless visible light to generate reactive oxygen species which result in microbial cells' killing. Hematoporphyrin monomethyl ether (HMME) as a novel and affordable photosensitizer has been used in treating various clinical diseases for years, but few applications in infection. In this report, we studied the bactericidal effects of the HMME-mediated photodynamic reaction on the pathogenic microbes in supragingival plaque which can lead to many oral infectious diseases such as caries, gingivitis, and so on. Our findings demonstrated that HMME promoted an effective action in bacterial reduction with the application of laser energy. Moreover, the antimicrobial activities were dramatically enhanced as the HMME concentration and exposure time were increased, but reached a plateau when matched the appropriate agent concentration and illumination. It was found that the survival fraction of microorganisms is exponentially dependent on the product of HMME concentration and irradiation time. These promising results suggest the HMME may be an excellently cost-effective photosensitizing agent for mediating PACT in the treatment of supragingival plaque-related diseases. An optimized HMME concentration and irradiation time has been found to achieve the best results under our experimental conditions. The high HMME concentration matching short curative time, or vice versa, can achieve the similar therapeutic effect, which may provide more flexible treatment plans according to specific conditions.
Authors:
Yi Sun; Defeng Xing; Lanhua Shen; Miao Sun; Ming Fang; Liangjia Bi; Yanjiao Sui; Zhiguo Zhang; Wenwu Cao
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-4-25
Journal Detail:
Title:  Applied microbiology and biotechnology     Volume:  -     ISSN:  1432-0614     ISO Abbreviation:  Appl. Microbiol. Biotechnol.     Publication Date:  2013 Apr 
Date Detail:
Created Date:  2013-4-25     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8406612     Medline TA:  Appl Microbiol Biotechnol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, P.O. Box 31, YinHang Street, Nangang District, Harbin, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora th...
Next Document:  Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue dia...