Document Detail

Bacterial resistance mechanism: what proteomics can elucidate.
MedLine Citation:
PMID:  23349550     Owner:  NLM     Status:  Publisher    
Antibiotics are important therapeutic agents commonly used for the control of bacterial infectious diseases; however, resistance to antibiotics has become a global public health problem. Therefore, effective therapy in the treatment of resistant bacteria is necessary and, to achieve this, a detailed understanding of mechanisms that underlie drug resistance must be sought. To fill the multiple gaps that remain in understanding bacterial resistance, proteomic tools have been used to study bacterial physiology in response to antibiotic stress. In general, the global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents has made it possible to construct a database of proteins involved in the process of resistance to drugs with similar mechanisms of action. In the past few years, progress in using proteomic tools has provided the most realistic picture of the infective process, since these tools detect the end products of gene biosynthetic pathways, which may eventually determine a biological phenotype. In most bacterial species, alterations occur in energy and nitrogen metabolism regulation; glucan biosynthesis is up-regulated; amino acid, protein, and nucleotide synthesis is affected; and various proteins show a stress response after exposing these microorganisms to antibiotics. These issues have been useful in identifying targets for the development of novel antibiotics and also in understanding, at the molecular level, how bacteria resist antibiotics.
Thais Bergamin Lima; Michelle Flaviane Soares Pinto; Suzana Meira Ribeiro; Loiane Alves de Lima; Juliana Cançado Viana; Júnior Nelson Gomes; Elizabete de Souza Cândido; Simoni Campos Dias; Octávio Luiz Franco
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-24
Journal Detail:
Title:  FASEB journal : official publication of the Federation of American Societies for Experimental Biology     Volume:  -     ISSN:  1530-6860     ISO Abbreviation:  FASEB J.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-25     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8804484     Medline TA:  FASEB J     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, Brazil.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Habitually higher dietary glycemic index during puberty is prospectively related to increased risk m...
Next Document:  Preserved adiposity in the Fischer 344 rat devoid of gut microbiota.