Document Detail

B cell-associated immune profiles in patients with end-stage renal disease (ESRD).
Jump to Full Text
MedLine Citation:
PMID:  22617684     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Most of the previous studies on immune dysregulation in end-stage renal disease (ESRD) have focused on T cell immunity. We investigated B cell subpopulations in ESRD patients and the effect of hemodialysis (HD) on B cell-associated immune profiles in these patients. Forty-four ESRD [maintenance HD patients (n = 27) and pre-dialysis patients (n = 17)] and 27 healthy volunteers were included in this study. We determined the percentage of B cell subtypes, such as mature and immature B cells, memory B cells, and interleukin (IL)-10+ cells, as well as B cell-producing cytokines (IL-10, IL-4 and IL-21) by florescent activated cell sorting (FACS). B cell-associated gene expression was examined using real-time PCR and B cell producing cytokines (IL-10, IL-4 and IL-21) were determined using an enzyme- linked immunosorbent assay (ELISA). The percentage of total B cells and mature B cells did not differ significantly among the three groups. The percentages of memory B cells were significantly higher in the pre-dialysis group than in the HD group (P < 0.01), but the percentage of immature B cells was significantly lower in the pre-dialysis group than in the other groups. The percentages of IL-10-expressing cells that were CD19+ or immature B cells did not differ significantly (P > 0.05) between the two subgroups within the ESRD group, but the serum IL-10 concentration was significantly lower in the pre-dialysis group (P < 0.01). The results of this study demonstrate significantly altered B cell-associated immunity. Specifically, an imbalance of immature and memory B cells in ESRD patients was observed, with this finding predominating in pre-dialysis patients.
Authors:
Kyoung Woon Kim; Byung Ha Chung; Eun Joo Jeon; Bo-Mi Kim; Bum Soon Choi; Cheol Whee Park; Yong-Soo Kim; Seok-Goo Cho; Mi-La Cho; Chul Woo Yang
Related Documents :
22642494 - Large gradient high magnetic field affects flg29.1 cells differentiation to form osteoc...
22759974 - Tanshinone iia stimulates erythrocyte phosphatidylserine exposure.
314294 - T lymphocyte subpopulations in synovial fluid of patients with rheumatic disease.
22560904 - In vivo tissue engineering chamber supports human induced pluripotent stem cell surviva...
24148474 - Determination of quantum dots in single cells by inductively coupled plasma mass spectr...
1620244 - The force driving the extraneuronal transport mechanism for catecholamines (uptake2).
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Experimental & molecular medicine     Volume:  44     ISSN:  2092-6413     ISO Abbreviation:  Exp. Mol. Med.     Publication Date:  2012 Aug 
Date Detail:
Created Date:  2012-08-24     Completed Date:  2013-01-15     Revised Date:  2013-06-24    
Medline Journal Info:
Nlm Unique ID:  9607880     Medline TA:  Exp Mol Med     Country:  Korea (South)    
Other Details:
Languages:  eng     Pagination:  465-72     Citation Subset:  IM    
Affiliation:
Conversant Research Consortium in Immunologic Disease,Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adaptor Proteins, Signal Transducing / genetics
Adult
Antigens, CD19 / metabolism
B-Lymphocyte Subsets / immunology,  metabolism
B-Lymphocytes / immunology*,  metabolism
Cytokines / biosynthesis
Female
Humans
Immunophenotyping
Interleukin-10 / metabolism
Kidney Failure, Chronic / immunology*,  metabolism
Leukocytes, Mononuclear / metabolism
Male
Middle Aged
Proto-Oncogene Proteins / genetics
T-Lymphocytes, Regulatory / immunology,  metabolism
Chemical
Reg. No./Substance:
0/Adaptor Proteins, Signal Transducing; 0/Antigens, CD19; 0/B cell linker protein; 0/Cytokines; 0/Proto-Oncogene Proteins; 0/TCL1A protein, human; 130068-27-8/Interleukin-10
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Exp Mol Med
Journal ID (iso-abbrev): Exp. Mol. Med
Journal ID (publisher-id): EMM
ISSN: 1226-3613
ISSN: 2092-6413
Publisher: Korean Society for Biochemistry and Molecular Biology
Article Information
Download PDF
Copyright © 2012 by the Korean Society for Biochemistry and Molecular Biology
open-access:
Accepted Day: 22 Month: 5 Year: 2012
Print publication date: Day: 31 Month: 8 Year: 2012
Electronic publication date: Day: 23 Month: 5 Year: 2012
Volume: 44 Issue: 8
First Page: 465 Last Page: 472
ID: 3429810
PubMed Id: 22617684
DOI: 10.3858/emm.2012.44.8.053

B cell-associated immune profiles in patients with end-stage renal disease (ESRD)
Kyoung Woon Kim14*
Byung Ha Chung123*
Eun Joo Jeon14
Bo-Mi Kim14
Bum Soon Choi23
Cheol Whee Park23
Yong-Soo Kim23
Seok-Goo Cho15
Mi-La Cho14
Chul Woo Yang123
1Conversant Research Consortium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea.
2Transplant Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea.
3Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea.
4Rheumatism Research Center, Catholic Institute of Medical Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea.
5Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea.
Correspondence: Corresponding authors: Tel, 82-2-536-0323; Fax, 82-2-2258-6037; yangch@catholic.ac.kr (C.W.Y.), Tel, 82-2-599-4287; Fax, 82-2-2258-7467; iammila@catholic.ac.kr (M.L.C.)
[equal] *These authors contributed equally to this work.

Introduction

Patients with end-stage renal disease (ESRD) have altered immunity compared to the general population (Girndt et al., 1999). These alterations are characterized by impaired defensive immune cells, despite evidence of activation of markers by immune-competent cells. Previous studies reported that impairment of T cell function is important in the development of immune-dysregulation in ESRD patients. For example, various types of effector T cells such as Th1/Th2 cells, memory T cells, and regulatory T cells are associated with altered immunity in ESRD patients (Vanholder et al., 1991; Haag-Weber and Horl, 1993; Alvarez-Lara et al., 2004; Yoon et al., 2006). We previously reported that IL-17-producing effector memory T cells were significantly increased in ESRD patients (Chung et al., 2012).

Much evidence indicates that B cell impairment is also involved in immune dysregulation in ESRD patients. For example, only 50-75% of adult ESRD patients develop protective antibodies against the hepatitis B virus surface antigen after vaccination (de Graeff et al., 1985), and this clinical finding is supported by experimental evidence (Meuer et al., 1987; Girndt et al., 1993). However, only a few studies investigated the effect of ESRD on B cells (Raskova et al., 1987; Pahl et al., 2010). In addition, little is known regarding the effect of hemodialysis on B cell-associated immune profiles of ESRD patients.

The aim of this study was to investigate the B-lymphocyte immune profiles of a group of ESRD patients. In addition, we evaluated the effects of maintenance hemodialysis (HD) on immune cells by comparing the immune profile of maintenance HD patients and pre-dialysis patients.


Results
Baseline and laboratory findings of the patient population

Serum creatinine (Scr), blood urea nitrogen (BUN), and intact parathyroid hormone (i-PTH) levels were significantly higher, and hemoglobin levels significantly lower, in the ESRD group compared to the healthy control group (P < 0.05, respectively). In contrast, leukocyte and lymphocyte counts and C-reactive protein (CRP) did not differ significantly between the two groups. In the comparison between the HD and pre-dialysis groups, only the BUN levels were slightly higher in the pre-dialysis group; differences between other parameters were not significant (Table 1).

Comparison of B cell subtypes (CD19+ total B cells, memory B cells, mature B cells, and immature B cells) between the three groups

As shown in Figure 1 and Figure 2, the percentage of circulating memory B cells was significantly higher in the pre-dialysis group than in the HD group. The values were 34.6 ± 12.4 in the pre-dialysis group (P = 0.008 as compared with HD), 20.1 ± 7.5% in the HD group (P = 0.007 as compared with healthy controls), and 27.2 ± 6.2% in the healthy controls. By contrast, the frequency of CD19+ total B cells did not differ significantly between the three groups (HD, 20.1 ± 7.5%; pre-dialysis, 34.6 ± 12.4%; healthy, 27.2 ± 6.2%). The frequency of immature B cells was also significantly higher in the HD group as compared with the pre-dialysis group: HD, 8.5 ± 4.2% (P = 0.045 as compared with pre-dialysis) and healthy controls (5.0 ± 2.3%). However, the frequency of mature B cells did not differ between the HD and pre-dialysis patients (P > 0.05).

Comparison of total IL-10+ B cells, immature IL-10+ B cells, and regulatory T cells between the three groups

As shown in Figure 3, the percentage of IL-10+/CD19+ B cells did not differ significantly between the HD group (1.2 ± 0.5%) or pre-dialysis group (1.1 ± 0.4%) as compared with the healthy controls (1.4 ± 0.4%; Figure 3A). Additionally, the percentage of IL-10+ immature B cells and regulatory T cells (CD25high Foxp3+/CD4+) did not differ significantly between the HD group (IL-10+ immature B cells, 4.2 ± 3.3%; regulatory T cells, 7.8 ± 1.3%) or pre-dialysis group (IL-10+ immature B cells, 4.7 ± 2.1%; regulatory T cells, 7.0 ± 2.5%) as compared with the healthy controls (IL-10+ immature B cells, 5.8 ± 3.2%; regulatory T cells, 9.6 ± 2.6%; Figures 3B and 3C).

Expression of TCL1A, MS4A1, and BLNK mRNA measured by real-time PCR in PBMCs of healthy controls and HD and pre-dialysis patients

After peripheral blood mononuclear cells (PBMCs) of the three groups were stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin, expression levels of TCL1A, MS4A1, and BLNK mRNA were determined using real-time polymerase chain reaction (PCR). As shown in Figure 4, BLNK mRNA levels were significantly higher in the HD and pre-dialysis groups as compared with the healthy controls: HD, 1.2 ± 0.4 (P = 0.027 as compared with healthy controls); pre-dialysis patients, 1.3 ± 0.1 (P = 0.030 as compared with healthy controls); and healthy controls, 0.6 ± 0.2. However, TCL1A and MS4A1 mRNA expression levels did not differ between HD and pre-dialysis patients (P > 0.05).

Comparison of cytokine production between the three groups

Within the three groups, IL-10 production was significantly lower in the pre-dialysis group (6.1 ± 1.4%) as compared with HD patients (4.4 ± 0.5%; P = 0.007; Figure 5A). As shown in Figures 5B and 5C, IL-21 production did not differ between the ESRD patients and healthy controls. IL-21 production values were as follows: HD group, 3.2 ± 1.3%; pre-dialysis group, 2.6 ± 0.4%; and healthy control group, 3.4 ± 1.0%. Within the three groups, IL-4 production was significantly higher in the HD group (101.7 ± 13%) as compared with the healthy control group (56.4 ± 15.8%; P = 0.014; Figure 5C).


Discussion

In this study, we evaluated the B lymphocyte-associated immunological profile of ESRD patients as compared with the general population. Our results showed that the distribution of B cell subsets had significantly different patterns in each group. The most prominent finding in this study was the decrease in immature B cells and the increase in memory B cell in pre-dialysis patients.

Our finding of an imbalance between immature B cells and memory B cells in the pre-dialysis group compared to the HD group is significant. In a previous report (Pahl et al., 2010), reported a diffuse reduction of B cell subpopulations, including memory B cells, in maintenance HD patients in spite of an elevation in B cell growth and an increase in differentiation and survival factors (Pahl et al., 2010). In this study, there was a significant decrease in memory B cells in the HD group compared to the healthy control group, consistent with the previous report. However these cell types were significantly increased in the pre-dialysis group compared to the HD group, which suggests that the immune system was activated.

In addition, we investigated CD19+CD24hiCD38hi B cells that have previously been identified as an immature transitional B cell (Sims et al., 2005; Plebani et al., 2007). Of note, this cell type has regulatory capacity. In previous reports, it significantly inhibited the differentiation of pro-inflammatory cytokine-expressing CD4+ T cells in a dose- and contact-dependent manner (Blair et al., 2010). However, whether this cell type was dysregulated in ESRD patients has not been investigated.

In this study, a significant decrease in immature B cells was found in the pre-dialysis group compared to the HD group, which suggests that there is defective regulatory activity in pre-dialysis patients, potentially due to their uremic state. Resolution of uremic toxicity by hemodialysis can recover the B cell balance, thereby increasing the percentage of immature B cells in the HD group. As expected, the uremic state was more severe in the pre-dialysis group, as reflected by the higher BUN levels. Combined with the increase in memory B cells, the decrease in immature B cells may reflect the imbalance of effector and regulatory capacity in the pre-dialysis group.

There were no significant differences in these cells between the pre-dialysis group and healthy controls. The reason for this is unclear, but we postulated that the characteristics of memory B cells and immature B cells in the pre-dialysis group may differ from those of the healthy controls. ESRD patients have non-specific immune activation in spite of susceptibility to pathogens (Vanholder et al., 1991; Haag-Weber and Horl, 1993). Therefore, it is possible that the extra memory B cells in the pre-dialysis group are not immune-competent cells sensitized to a pathogenic challenge, but represent non-specifically activated cells due to the severe uremic conditions.

We further investigated the transcriptional expression of markers associated with B cell development and differentiation using real time PCR. In previous reports, BLNK mRNA expression levels were highest in the spleen, with lower levels of expression in the liver, kidney, pancreas, small intestines, and colon (Fu et al., 1998). Analysis of BLNK protein expression levels in hematopoietic and fibroblast cell lines of human, mouse, or rat origin demonstrated their preferential expression in human and mouse B cells. While all human B cells examined expressed BLNK and BLNK-s, mouse B cells expressed only one detectable form of the BLNK protein. Hence, BLNK protein expression among hematopoietic cells appears to be limited to the B cell lineage, with human B cells expressing two alternatively spliced forms and mouse B cells expressing a single form (Minegishi et al., 1999; Pappu et al., 1999; Chiu et al., 2002). We found significantly increased expression of BLNK in the HD and pre-dialysis groups. BLNK regulates biological outcomes of B cell function and development. The BLNK gene encodes a cytoplasmic linker or adaptor protein that plays a critical role in B cell development. This protein bridges B cell receptor-associated kinase activation with downstream signaling pathways, thereby affecting various biological functions. BLNK is a pivotal adapter protein in signal transduction from the pre-BCR and BCR. It contains multiple tyrosine phosphorylation sites that provide binding sites for key signaling proteins, such as PLCγ, Btk, and Vav (Kurosaki and Tsukada, 2000). BLNK mutations cause a complete block in B cell development at the pro-B cell to pre-B cell transition in humans (Minegishi et al., 1999; Newell et al., 2010). In BLNK-null mutant mice, the developmental block is partial, resulting in the accumulation of pre-BCR+ large pre-B cells in the bone marrow and a reduced number of mature B cells in the periphery (Jumaa et al., 2005).

B lymphopenia in end stage renal disease may be partially attributed to an increased susceptibility to cell death by apoptosis that is associated with a decreased expression of Bcl-2 (Fernandez-Fresnedo et al., 2000).

BCR signaling leads to growth arrest and apoptosis in immature B cells, whereas it promotes survival and proliferation of mature B cells via activation of Rel-dependent antiapoptotic and proproliferative genes (Grumont et al., 1998; Tumang et al., 1998). Both BLNK and BCAP play important roles in BCR signaling (Tan et al., 2001; Simeoni et al., 2004). The long isoform of BLNK was also implicated in promoting BCR-induced apoptosis (Grabbe and Wienands, 2006).

As shown in Figure 4, BLNK mRNA levels were significantly higher in the HD and pre-dialysis groups as compared with the healthy controls. BCR signaling growth arrest and apoptosis in immature B cells, whereas it promotes survival and proliferation of mature B cells.

Tcl1, which is abundantly expressed in immature and IgM+ memory B cells, respectively, plays a crucial role in regulating Akt activation, thereby affecting B cell survival and death via the Bcl-2-regulated pathway. In Tcl1-deficient mice, the number of splenic follicular, germinal center, and marginal zone B cells is reduced (Kang et al., 2005). CD20 belongs to the MS4A family of molecules with multiple membrane-spanning domains, and is expressed on pre-B and mature B cells, but is lost upon differentiation into plasma cells. CD20 is unlikely to have a natural ligand, but in vitro studies with CD20 monoclonal antibodies have demonstrated its involvement in the regulation of B cell activation and proliferation (Kuijpers et al., 2010). The expression of Tcl1 and MS4A1 did not differ among the three groups, which suggests that they are not involved in immune impairment in ESRD patients.

The cytokine IL-10, which is known to be associated with the function of regulatory B cells, was significantly reduced in the pre-dialysis group. However IL-10 producing immature B cells did not differ between the three groups, which suggests that the major cell population contributing to the reduced IL-10 levels in the pre-dialysis group is not B cells. IL-21, which is associated with growth and differentiation of B cells, did not differ between the three groups either (Ettinger et al., 2008). The effects of IL-21 on B cells vary depending on the context, e.g., whether in vivo or in vitro (Ozaki et al., 2002, 2004), suggesting that IL-21 influences multiple aspects of B cell differentiation. The results of this study suggest that IL-10 and IL-21 are not associated with B cell-associated immune impairment in ESRD patients. To determine which cytokine is associated with the defects in regulatory B cells found in this study, further investigations may be required. IL-4, which is a major Th2-associated cytokine, were significantly increased in the HD group. In our previous study, we reported an increase in Th2 cells in the HD group, and it was consistent with the increased levels of IL-4 found in this study (Chung et al., 2012).

In conclusion, this is the first report demonstrating that number of B cells with regulatory function was significantly decreased, and the expression levels of markers associated with this cell type were reduced in ESRD patients. This may explain one of the underlying mechanisms of immune dysregulation in ESRD patients. We anticipate that the results of this study may contribute to the development of therapeutic options for immune dysregulation in ESRD patients.


Methods
Patients and clinical information

The patient population was comprised of 44 ESRD patients (27 patients on hemodialysis and 17 patients with stage 5 chronic kidney disease, but not on HD) and 27 healthy controls. In HD patients, samples were taken in the morning, one day after HD. All of the laboratory and immunological results were measured in blood specimens taken at the same time. This study was approved by the Institutional Review Board of the Catholic University (KC10SISI0235), and we obtained informed consent from all patients.

Isolation of human cells

PBMCs were prepared from heparinized blood by Ficoll-Hypaque (SG1077) density-gradient centrifugation. Cell culture was performed as described previously (Alvarez-Lara et al., 2004). In brief, the cell suspension was adjusted to a concentration of 106/ml in RPMI 1640 medium supplemented with 10% FCS, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM L-glutamine. The cell suspension (1 ml) was dispensed into 24-well multi-well plates (Nunc, Roskilde, Denmark). For cytokine detection at the single-cell level, PBMCs were stimulated with 50 ng/ml PMA and 1 µg/ml ionomycin for 4 h (Woo et al., 2011).

FACS analysis

For analysis of human intracellular cytokine production, PBMC were stimulated with GolgiStop (BD Biosciences, San Diego, CA) added in the final 4 h, along with PMA and ionomycin. For intracellular staining, cells were stained with combinations of the following monoclonal antibodies (mAbs): CD4-PE/Cy7 (RPA-T4, IgG1; BioLegend, San Diego, CA); CD25-APC (M-A251, IgG1, κ; PharMingen, San Diego, CA); CD38-PerCP cy5.5 (HIT2, IgG1, κ; PharMingen); CD19-FITC (SJ25-C1, IgG1; SouthernBiotech, Birmingham, Alabama); and CD24-PE (ML5, IgG2a, κ; PharMingen). Cells were washed, fixed, permeabilized, and stained to detect intracellular cytokines with mAbs to Foxp3-FITC (PCH101, IgG2a, κ; eBioscience); and IL-10-APC (JES3-19F1, IgG2a, κ; PharMingen). Appropriate isotype controls were used for gate-setting for cytokine expression. Cells were analyzed on a FACS calibur flow cytometry system (Becton Dickinson Systems).

Real-time PCR

After incubation for 4 h with PMA and ionomycin, mRNA was extracted using RNAzol B (Biotex Laboratories, Houston, TX) according to the manufacturer's instructions. Reverse transcription of 2 µg total mRNA was performed at 42℃ using the Superscript™ reverse transcription system (Takara, Shiga, Japan). PCR was performed in a 20 µl final volume in capillary tubes using a LightCycler instrument (Roche Diagnostics, Mannheim, Germany). The reaction mixture contained 2 µl of LightCycler FastStart DNA MasterMix for SYBR® Green I (Roche Diagnostics), 0.5 µM of each primer, 4 mM MgCl2, and 2 µl of template DNA. All capillaries were sealed, centrifuged at 500 × g for 5 s, and then amplified following denaturation (95℃ for 10 min), followed by 45 cycles of 10 s at 95℃, 10 s at 60℃ (β-actin) or 57℃ (TCL1A, MS4A1, BLNK), and 10 s at 72℃. The temperature transition rate was 20℃/s for all steps. The double-stranded PCR product was measured during the 72℃ extension step by detection of fluorescence associated with the binding of SYBR Green I to the product. Fluorescence curves were analyzed with the LightCycler software v. 3.0 (Roche Diagnostics). The LightCycler was used to quantify TCL1A, MS4A1, and BLNK mRNA. The relative expression level of each sample was calculated as the level of TCL1A, MS4A1, and BLNK normalized to an endogenously expressed housekeeping gene (β-actin). Melting curve analysis was performed immediately after the amplification protocol under the following conditions: 0 s (hold time) at 95℃, 15 s at 71℃, and 0 s (hold time) at 95℃. The rate of temperature change was 20℃/s, except for 0.1℃/s in the final step. The generated melting peak represented the amount of specific amplified product. The crossing point (Cp) was defined as the maximum of the second derivative from the fluorescence curve. Negative controls were also included and contained all elements of the reaction mixture except template DNA. All samples were processed in duplicate (Jeong et al., 2011).

Enzyme-linked immunosorbent assay

In brief, a 96-well plate (Nunc) was coated with 4 µg/ml monoclonal antibodies against IL-10, IL-21, and IL-4 (R&D Systems) at 4℃ overnight. After blocking with PBS/1% BSA/0.05% Tween 20 for 2 h at room temperature (22-25℃), test samples and the standard recombinant IL-10, IL-21, and IL-4 were added to the 96-well plate and incubated at room temperature for 2 h. Plates were washed four times with PBS/Tween 20 and then incubated with 500 ng/ml biotinylated mouse monoclonal antibodies against IL-10, IL-21, and IL-4 for 2 h at room temperature. After washing, streptavidin-alkaline phosphate-horseradish peroxidase conjugate (Sigma) was added, and the plate was incubated for 2 h. The plate was washed again and incubated with 1 mg/ml p-nitrophenyl phosphate (Sigma) dissolved in diethanolamine (Sigma) to develop the color reaction. The reaction was stopped by the addition of 1 M NaOH, and the optical density of each well was read at 405 nm. The lower limit of IL-10, IL-21, and IL-4 detection was 10 pg/ml. Recombinant human IL-10, IL-21, and IL-4 diluted in culture medium were used as the calibration standards whose concentrations ranged from 10 to 2000 pg/ml. A standard curve was drawn by plotting optical density against the log of the concentration of recombinant cytokines and was used to calculate the IL-10, IL-21, and IL-4 concentrations in the test samples.

Statistical analysis

Statistical analysis was performed using the SPSS software (version 16.0; SPSS Inc., Chicago, IL). Continuous variables were compared using Student's t-testor one-way analysis of variance (ANOVA). For categorical variables, chi-square frequency analysis was used. The results are presented as mean ± standard deviation (SD). P values < 0.05 were considered statistically significant.


Acknowledgements

This study was supported by a grant (A092258) from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea.


Abbreviations
ESRD end-stage renal disease
HD hemodialysis
Scr serum creatinine

References
1. Alvarez-Lara MA,Carracedo J,Ramirez R,Martin-Malo A,Rodriguez M,Madueno JA,Aljama P. The imbalance in the ratio of Th1 and Th2 helper lymphocytes in uraemia is mediated by an increased apoptosis of Th1 subsetNephrol Dial TransplantYear: 2004193084309015574999
2. Blair PA,Norena LY,Flores-Borja F,Rawlings DJ,Isenberg DA,Ehrenstein MR,Mauri C. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patientsImmunityYear: 20103212914020079667
3. Chiu CW,Dalton M,Ishiai M,Kurosaki T,Chan AC. BLNK: molecular scaffolding through cis-mediated organization of signaling proteinsEMBO JYear: 2002216461647212456653
4. Chung BH,Kim KW,Sun IO,Choi SR,Park HS,Jeon EJ,Kim BM,Choi BS,Park CW,Kim YS,Cho ML,Yang CW. Increased interleukin-17 producing effector memory T cells in the end-stage renal disease patientsImmunol LettYear: 201214118118922004873
5. de Graeff PA,Dankert J,de Zeeuw D,Gips CH,van der Hem GK. Immune response to two different hepatitis B vaccines in haemodialysis patients: a 2-year follow-upNephronYear: 1985401551604000344
6. Ettinger R,Kuchen S,Lipsky PE. The role of IL-21 in regulating B-cell function in health and diseaseImmunol RevYear: 2008223608618613830
7. Fernandez-Fresnedo G,Ramos MA,Gonzalez-Pardo MC,de Francisco AL,Lopez-Hoyos M,Arias M. B lymphopenia in uremia is related to an accelerated in vitro apoptosis and dysregulation of Bcl-2Nephrol Dial TransplantYear: 20001550251010727545
8. Fu C,Turck CW,Kurosaki T,Chan AC. BLNK: a central linker protein in B cell activationImmunityYear: 19989931039697839
9. Girndt M,Kohler H,Schiedhelm-Weick E,Meyer zum Buschenfelde KH,Fleischer B. T cell activation defect in hemodialysis patients: evidence for a role of the B7/CD28 pathwayKidney IntYear: 1993443593657690861
10. Girndt M,Sester U,Sester M,Kaul H,Khler H. Impaired cellular immune function in patients with end-stage renal failureNephrol Dial TransplantYear: 1999142807281010570074
11. Grabbe A,Wienands J. Human SLP-65 isoforms contribute differently to activation and apoptosis of B lymphocytesBloodYear: 20061083761376816912232
12. Grumont RJ,Rourke IJ,O'Reilly LA,Strasser A,Miyake K,Sha W,Gerondakis S. B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cellsJ Exp MedYear: 19981876636749480976
13. Haag-Weber M,Horl WH. Uremia and infection: mechanisms of impaired cellular host defenseNephronYear: 1993631251318450902
14. Jeong IK,Oh da H,Park SJ,Kang JH,Kim S,Lee MS,Kim MJ,Hwang YC,Ahn KJ,Chung HY,Chae MK,Yoo HJ. Inhibition of NF-kappaB prevents high glucose-induced proliferation and plasminogen activator inhibitor-1 expression in vascular smooth muscle cellsExp Mol MedYear: 20114368469221975282
15. Jumaa H,Hendriks RW,Reth M. B cell signaling and tumorigenesisAnnu Rev ImmunolYear: 20052341544515771577
16. Kang SM,Narducci MG,Lazzeri C,Mongiovi AM,Caprini E,Bresin A,Martelli F,Rothstein J,Croce CM,Cooper MD,Russo G. Impaired T- and B-cell development in Tcl1-deficient miceBloodYear: 20051051288129415479728
17. Kuijpers TW,Bende RJ,Baars PA,Grummels A,Derks IA,Dolman KM,Beaumont T,Tedder TF,van Noesel CJ,Eldering E,van Lier RA. CD20 deficiency in humans results in impaired T cell-independent antibody responsesJ Clin InvestYear: 201012021422220038800
18. Kurosaki T,Tsukada S. BLNK: connecting Syk and Btk to calcium signalsImmunityYear: 2000121510661400
19. Meuer SC,Hauer M,Kurz P,Meyer zum,Kohler H. Selective blockade of the antigen-receptor-mediated pathway of T cell activation in patients with impaired primary immune responsesJ Clin InvestYear: 1987807437493497950
20. Minegishi Y,Rohrer J,Coustan-Smith E,Lederman HM,Pappu R,Campana D,Chan AC,Conley ME. An essential role for BLNK in human B cell developmentScienceYear: 19992861954195710583958
21. Newell KA,Asare A,Kirk AD,Gisler TD,Bourcier K,Suthanthiran M,Burlingham WJ,Marks WH,Sanz I,Lechler RI,Hernandez-Fuentes MP,Turka LA,Seyfert-Margolis VL. Identification of a B cell signature associated with renal transplant tolerance in humansJ Clin InvestYear: 20101201836184720501946
22. Ozaki K,Spolski R,Feng CG,Qi CF,Cheng J,Sher A,Morse HC 3rd,Liu C,Schwartzberg PL,Leonard WJ. A critical role for IL-21 in regulating immunoglobulin productionScienceYear: 20022981630163412446913
23. Ozaki K,Spolski R,Ettinger R,Kim HP,Wang G,Qi CF,Hwu P,Shaffer DJ,Akilesh S,Roopenian DC,Morse HC 3rd,Lipsky PE,Leonard WJ. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6J ImmunolYear: 20041735361537115494482
24. Pahl MV,Gollapudi S,Sepassi L,Gollapudi P,Elahimehr R,Vaziri ND. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expressionNephrol Dial TransplantYear: 20102520521219684120
25. Pappu R,Cheng AM,Li B,Gong Q,Chiu C,Griffin N,White M,Sleckman BP,Chan AC. Requirement for B cell linker protein (BLNK) in B cell developmentScienceYear: 19992861949195410583957
26. Plebani A,Lougaris V,Soresina A,Meini A,Zunino F,Losi CG,Gatta R,Cattaneo G,Nespoli L,Marinoni M,Capolunghi F,Vivarelli M,Quinti I,Carsetti R. A novel immunodeficiency characterized by the exclusive presence of transitional B cells unresponsive to CpGImmunologyYear: 200712118318817313486
27. Raskova J,Ghobrial I,Czerwinski DK,Shea SM,Eisinger RP,Raska K Jr. B-cell activation and immunoregulation in end-stage renal disease patients receiving hemodialysisArch Intern MedYear: 198714789933492183
28. Simeoni L,Kliche S,Lindquist J,Schraven B. Adaptors and linkers in T and B cellsCurr Opin ImmunolYear: 20041630431315134779
29. Sims GP,Ettinger R,Shirota Y,Yarboro CH,Illei GG,Lipsky PE. Identification and characterization of circulating human transitional B cellsBloodYear: 20051054390439815701725
30. Tan JE,Wong SC,Gan SK,Xu S,Lam KP. The adaptor protein BLNK is required for b cell antigen receptor-induced activation of nuclear factor-kappa B and cell cycle entry and survival of B lymphocytesJ Biol ChemYear: 2001276200552006311274146
31. Tumang JR,Owyang A,Andjelic S,Jin Z,Hardy RR,Liou ML,Liou HC. c-Rel is essential for B lymphocyte survival and cell cycle progressionEur J ImmunolYear: 199828429943129862367
32. Vanholder R,Ringoir S,Dhondt A,Hakim R. Phagocytosis in uremic and hemodialysis patients: a prospective and cross sectional studyKidney IntYear: 1991393203272002645
33. Woo YJ,Yoon BY,Jhun JY,Oh HJ,Min SW,Cho ML,Park SH,Kim HY,Min JK. Regulation of B cell activating factor (BAFF) receptor expression by NF-KappaB signaling in rheumatoid arthritis B cellsExp Mol MedYear: 20114335035721515993
34. Yoon JW,Gollapudi S,Pahl MV,Vaziri ND. Naive and central memory T-cell lymphopenia in end-stage renal diseaseKidney IntYear: 20067037137616738532

Article Categories:
  • Original Article

Keywords: B-lymphocyte subsets, kidney failure, chronic, precursor cells, B-lymphoid, renal dialysis.

Previous Document:  The role of the kidney in the systemic elimination of interleukin 6, platelet-derived growth factor ...
Next Document:  Role of K(+) binding residues in stabilization of heme spin state of Leishmania major peroxidase.