Document Detail


Automated system for imageless evaluation of arterial compliance.
MedLine Citation:
PMID:  23365872     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Evaluation of arterial compliance is very significant in early detection of coronary heart disease. Here we present an imageless portable system for automated estimation of local arterial compliance, designed to be operated by a general medical practitioner with no prior knowledge of ultrasonography. An algorithm for automatic detection and tracking of the arterial wall locations has been developed to minimize the operator expertise required for measurement. The performance of the automated algorithm was thoroughly characterized using a simulation platform developed for the purpose. Measurements performed on a few human volunteers by untrained personnel clearly illustrated the practical utility of the automatic algorithm during in-vivo tests. The proposed system could be used for developing an inexpensive cardiovascular screening device for large scale deployment in primary health care centers.
Authors:
Ashish Kumar Sahani; Jayaraj Joseph; Mohanasankar Sivaprakasam
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference     Volume:  2012     ISSN:  1557-170X     ISO Abbreviation:  Conf Proc IEEE Eng Med Biol Soc     Publication Date:  2012 Aug 
Date Detail:
Created Date:  2013-01-31     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101243413     Medline TA:  Conf Proc IEEE Eng Med Biol Soc     Country:  United States    
Other Details:
Languages:  eng     Pagination:  227-31     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Model-based estimation of blood pressure response to epinephrine.
Next Document:  Perturbationless calibration of pulse transit time to blood pressure.