Document Detail

The Association of Left Ventricular Hypertrophy with Intraventricular Dyssynchrony at Rest and during Exercise in Hypertensive Patients.
Jump to Full Text
MedLine Citation:
PMID:  23346286     Owner:  NLM     Status:  PubMed-not-MEDLINE    
BACKGROUND: Impaired exercise tolerance with dyspnea is common in hypertensive patients and this may be due to the exaggeration of nonuniform ventricular activation during exercise. So we want to evaluate the effect of left ventricular hypertrophy (LVH) on systolic intraventricular dyssynchrony during exercise.
METHODS: A total of 85 patients with hypertension who having exertional dyspnea and 30 control individuals were enrolled. Exercise stress echocardiography was performed using a symptom limited, multistage supine bicycle test. To evaluate the dyssynchrony of left ventricular (LV), we calculated the standard deviation (SD) of the averaged time-to-peak systolic velocity (TPs-SD, ms) of 12 middle and basal LV segments obtained from the three standard apical views at rest and peak exercise.
RESULTS: There was no significant difference in systolic blood pressure (BP) and heart rate between the two groups. TPs-SD was significantly higher in patients with LVH at rest (31.5 ± 12.1 vs. 22.0 ± 12.6 ms, p = 0.002) with exaggeration of the degree at peak exercise (39.0 ± 11.9 vs. 24.6 ± 13.3 ms, p < 0.001). Multiple regression analysis showed LV mass index was independently associated with LV dyssynchrony at peak exercise (β = 0.515, p = 0.001) when controlled for age, sex, and systolic BP at peak exercise.
CONCLUSION: Intraventricular systolic dyssynchrony during exercise is significantly associated with the degree of LVH in hypertensive patients.
Hye-Sun Seo; Youn-Haeng Cho; Jae Huk Choi; Jon Suh; Nae-Hee Lee; Oh Kyung Lim
Related Documents :
23719216 - The effect of a short-term exercise programme on haemodynamic adaptability; a randomise...
24983706 - Beneficial effects of combined exercise training on early recovery cardiopulmonary exer...
10748196 - Energy metabolism in uncoupling protein 3 gene knockout mice.
23554756 - Rehabilitation training improves exercise tolerance after percutaneous coronary interve...
3400456 - Diurnal fluctuations of middle ear pressures in atelectatic ears.
22327086 - Influence of a new bicycle crank design on aerobic parameters of non-cyclists.
Publication Detail:
Type:  Journal Article     Date:  2012-12-31
Journal Detail:
Title:  Journal of cardiovascular ultrasound     Volume:  20     ISSN:  1975-4612     ISO Abbreviation:  J Cardiovasc Ultrasound     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2013-01-24     Completed Date:  2013-01-25     Revised Date:  2013-05-30    
Medline Journal Info:
Nlm Unique ID:  101477138     Medline TA:  J Cardiovasc Ultrasound     Country:  Korea (South)    
Other Details:
Languages:  eng     Pagination:  174-80     Citation Subset:  -    
Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Hospital, Bucheon, Korea.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Cardiovasc Ultrasound
Journal ID (iso-abbrev): J Cardiovasc Ultrasound
Journal ID (publisher-id): JCU
ISSN: 1975-4612
ISSN: 2005-9655
Publisher: Korean Society of Echocardiography
Article Information
Download PDF
Copyright © 2012 Korean Society of Echocardiography
Received Day: 02 Month: 10 Year: 2012
Revision Received Day: 17 Month: 12 Year: 2012
Accepted Day: 17 Month: 12 Year: 2012
Print publication date: Month: 12 Year: 2012
Electronic publication date: Day: 31 Month: 12 Year: 2012
Volume: 20 Issue: 4
First Page: 174 Last Page: 180
PubMed Id: 23346286
ID: 3542510
DOI: 10.4250/jcu.2012.20.4.174

The Association of Left Ventricular Hypertrophy with Intraventricular Dyssynchrony at Rest and during Exercise in Hypertensive Patients
Hye-Sun Seo, MD, PhD1
Youn-Haeng Cho, MD, PhD1
Jae Huk Choi, MD1
Jon Suh, MD, PhD1
Nae-Hee Lee, MD, PhD1
Oh Kyung Lim, MD, PhD2
1Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Hospital, Bucheon, Korea.
2Department of Rehabilitation Medicine, Gachon University Gil Hospital, Incheon, Korea.
Correspondence: Address for Correspondence: Hye-Sun Seo, Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 420-767, Korea. Tel: +82-32-621-5138, Fax: +82-32-621-6461,


Left ventricular hypertrophy (LVH) in hypertension is the response to increased afterload, and is associated with left ventricular (LV) relaxation abnormalities.1) Even in the normal LV systolic performance, hypertrophy results in a rise in left atrial (LA) pressure and pulmonary edema at loading condition. Dyspnea is very common symptom in these patients especially during exercise.2)

Myocardial hypertrophy, that is increased interstitial fibrosis, has been known to be the morphological change that causes diastolic myocardial stiffness.3-6) Myocardial disarray typically shown in hypertrophic cardiomyopathy (HCM) also affects the ventricular relaxation.

It is well known that the distribution and magnitude of LVH are not uniform in patients with HCM, which results in regional heterogeneity of LV systolic and diastolic function.7-10) This temporal and spatial nonuniformity is also an important determinant of global LV function in coronary and hypertensive heart disease.11) Actually, De Marchi et al.12) showed asymmetrical distribution of LVH is related to regional asynchrony of LV relaxation in hypertensive heart disease. However, until now, the regional asynchrony and nonuniform distribution of hypertrophied myocardium has been evaluated only at resting state although this dyssynchrony maybe exaggerated during exercise. And this can be the cause of exertional dyspnea in patients with LVH due to lack of uniform contraction of myocardium, relative decrease in stroke volume and diastolic asynchrony.

Therefore, in this study, we investigated the degree of myocardial dyssynchrony of hypertrophied myocardium and the relationship between distribution of myocardium and regional dyssynchrony during exercise as well as at rest.


We selected 85 patients who relatively well controlled, treated hypertension and complained of exertional dyspnea and 30 control individuals after receiving informed consent. Among the eighty five patients, 30 patients had LVH. The patients with any of the following were excluded from participation: valvular heart disease; peripheral vascular disease; significant systemic disease; history of inflammatory disease; symptomatic cerebrovascular disease (including previous transient ischemic attack within 6 months); history of significant coronary artery disease; a clinically significant atrioventricular conduction disturbance; history of atrial fibrillation or other serious arrhythmia; history of congestive heart failure; liver cirrhosis; severe hypertension (> 180/110 mmHg); serum creatinine > 1.4 mg/dL; pregnant women.

Two-dimensional and Doppler echocardiography

Echocardiography was performed with an ultrasound system (Vivid 7 GE Vingmed, Horten, Norway) with a 2.5-MHz transducer. Standard 2-dimensional (2D) measurements [end-diastolic and end-systolic dimensions, ventricular septum and posterior wall thickness, LA volume index, LV mass index (LVMI), LV outflow tract] including LV ejection fraction were measured with the patient in the left lateral position. LV mass (LVM) was calculated using the Devereux-modified American Society of Echocardiography cube formula,13) and LVMI was obtained by dividing the LVM by the body surface area. LVH was considered present when LVMI was greater than 105 g/m2 in men or 95 g/m2 in women.13) A 1- to 2-mm pulsed Doppler sample volume was placed at the mitral valve tip, and mitral flow velocities from 5 to 10 cardiac cycles were recorded. The following variables were obtained: peak velocity of early filling (E) and late (A) filling, deceleration time (DT) of the E wave velocity and ratio of E over A.

Doppler with the sample volume at the tip of the mitral valve leaflets, systolic (S') and early (E') and late (A') diastolic mitral annular velocities were measured in the apical 4-chamber view using pulsed wave Doppler tissue imaging by spectral pulsed Doppler signal filters, bypassing highpass filter, adjusting Nyquist limit until 15-20 cm/sec (close to myocardial velocities), and using the minimal optimal gain.

After the standard echocardiographic examination, Doppler tissue imaging for offline color tissue velocity imaging was again activated in the apical 4 chamber, 5 chamber (not shown) and 2 chamber image (Fig. 1).14)

Exercise stress echocardiography

Exercise stress echocardiography was performed using a symptom limited, multistage supine bicycle exercise test with a variable load bicycle ergometer (Medical Positioning Inc., Kansas City, MO, USA). The patients pedaled at constant speed beginning at a workload of 25 W, with an incremental workload of 25 W every 3 minutes. During exercise, the standard 2D measurements including LV ejection fraction, mitral inflow velocities (E, A, DT, E/A) and tissue Doppler parameters (S', E', A') were measured and measurements was recorded with simultaneous electrocardiography at a sweep speed of 50 to 100 mm/s.15) Each measurement was made at baseline, at each stage of exercise, and during recovery. To evaluate the intra- and interpersonal measurement variabilities, the measurements were performed off-line by 2 investigators who were blinded to the status of patients in randomly selected 20 patients. Patients who demonstrated evidence of overt myocardial ischemia during exercise, such as significant ST segment change or development of regional wall motion abnormality, were excluded from analysis.

By use of Doppler tissue imaging, the following regional parameters were evaluated in 12 different basal, medial myocardial segments: systolic (S'), early- and late-diastolic (E' and A'), peak velocities and regional isovolumetric contraction time (ms). Time from the Q wave on the electrocardiogram to the peak velocity of regional myocardium was measured at each 12 segments. Systolic dyssynchrony index was defined as standard deviation (SD) of time from Q wave to peak systolic velocity of 12 segments (TPs) and diastolic dyssynchrony index was defined as SD of the time from Q wave to myocardial early diastolic velocity (TPe) measured (Fig. 2).14) And at exercise, modified SD (SD / heart rate) was applied considering heart rate (Fig. 3).15)

Statistical analysis

Values were expressed as mean ± SD. Comparison of the dichotomous variables was performed using the chi-square analysis. Comparison of continuous variables between the two study groups was performed using the student's t-test. Values of p < 0.05 was considered statistically significant. Statistical analysis was performed with SPSS 11.0 statistical program (SPSS Inc., Chicago, IL, USA).

Clinical characteristics and baseline echocardiographic data

The age of patients having LVH is older than patients without LVH (Table 1). Reasonably LV dimension at diastolic phase, LV mass and LA volume was larger in LVH group. However, there was no difference in ejection fraction between two groups.

Hemodynamic parameters at rest and during exercise

Hemodynamic parameters at rest and during exercise were shown in Table 2. Baseline and during peak exercise, there was no significant difference in blood pressure (BP), heart rate (HR) and ejection fraction between two groups of hypertensive patients and their antihypertensive medications prescribed were similar without significant difference. However, the exercise duration is shorter in LVH group than no-LVH group. The main cause of stopping of exercise was that they complained of difficulty in breathing.

We measured many parameters as described at methods and E over E' (E/E') is considered as representative of LA pressure. S prime (S') is the contractile function of myocardium at each stage (Table 3).

Systolic, diastolic parameters at rest and during exercise in LVH and non-LVH group

As you can see in Table 3, at 50 W, E/E' value is significantly higher in LVH group which means diastolic dysfunction is worse at exercise in LVH group on the contrary similar E/E' at resting state in two groups. Over than 50 W, it is more difficult to measure E/E' value because E wave is summated with A wave. Contractile function at 50 W was similar in two groups, however delta S' (the change from baseline to peak exercise) was definitely lower in LVH group. Therefore, we can suggest that in spite of having similar systolic, diastolic function at resting state, with the exercise, the filling pressure of LV increased much more in LVH group and as well the myocardial contractile function was less increased in LVH group.

LV systolic asynchrony at rest and during exercise

However, in terms of LV asynchrony, there were many differences between two groups. TPs, TPs-SD is shorter in no LVH group even in resting state. This difference was exaggerated at peak exercise. As you can see in Table 4, modified TPs-SD at peak exercise (TPs-SD at peak exercise/HR at peak exercise) was much more increased in LVH group than non-LVH group.

LV diastolic asynchrony at rest and during exercise

LV diastolic asynchrony had similar pattern with LV systolic asynchrony. TPe and the SD of 12 segments TPe was shorter in no LVH group even in resting state. This difference was exaggerated at peak exercise. As you can see in Table 5, modified TPe-SD at peak exercise (the calculated value considering HR) was much more increased in LVH group than non-LVH group.

Multiple regression analysis showed that LVMI was independently associated with LV dyssynchrony at peak exercise (β = 0.515, p = 0.001) when controlled for age, sex, and systolic BP at peak exercise (Table 6).


The principal finding of the present study was that the patients with LVH had systolic and diastolic dyssynchrony at rest and this phenomenon exaggerated with exercise which can explain the dyspnea on exertion in the patients with LVH.

The development of LV dyssynchrony may occur because of electrical conduction delay, myocardial ischemia, or abnormal loading conditions.16), 17)

We found that in most segments, LV systolic synchronicity was impaired in hypertensive patients when compared with controls and the impairment was more serious in hypertensive patients with LVH. Diastolic asynchrony was also evident in LVH patients when compared with isolated hypertensive patients, which can be reflected by prolonged TPe in most LV segments and prolonged TPe-max. Kwon et al.18) found similar results of ours. In that study, systolic synchrony was impaired in patients with non-LVH to a similar degree in the LVH group.18), 19) However, our findings have more important implications. Although the degree of dyssynchrony was impaired similarly in non-LVH group and LVH group at resting state, exercise differentiated these two conditions. As shown in Table 3 and 4, systolic and diastolic dyssynchrony was exaggerated more in LVH group compared to non-LVH group.

Dyssynchrony has emerged as important mechanisms contributing to the progression of heart failure and LV remodeling.20) However, systolic dyssynchrony considered our results, it suggests that hypertension impairs LV function not only by influencing myocardial function, but also by impairing LV synchronicity.

And one of the principal findings in this study is the different response to exercise between male and female. Although we didn't show the subanalysis according to gender, E/E' at 50 W of exercise was much more elevated in women compared to men (14.2 ± 3.1 vs. 12.8 ± 2.8, p value = 0.024). And diastolic dyssynchrony index was also more elevated in women than men (TPe_SD at peak exercise: 41.3 ± 10.7 in women vs. 36.0 ± 9.1 in men, p value = 0.003).

In summary, women are vulnerable to increase in LA pressure and diastolic dyssynchrony especially at exercise. This result can explain the difference in symptoms and short exercise duration. And this phenomenon is similar to previous results. Masoudi et al.21) mentioned differences of women with heart failure as compared to men. They explained the reason was women live longer than men, more frequency of coronary artery disease, diabetes mellitus, depression, and etc.21-23) If we suggest the mechanism in addition to previous causes, diastolic dyssynchrony can be the cause of different women heart failure.

In conclusion, intraventricular systolic dyssynchrony during exercise is significantly associated with the degree of LVH in hypertensive patients and this could be the cause of dyspnea on exertion. And the difference of response according to gender should be more investigated.


We used the index of 50 watts of exercise, because as we discussed in discussion, if the extent of exercise is over 50 watts, most of E wave and A wave are summated in which condition it is difficult to know the exact value of diastolic parameters. In fact, 50 watt exercise is not peak exercise and the value of peak exercise may be different from that of 50 watts. However, we observed the significant different value of dyssynchrony index and many Doppler indexes between non-LVH group and LVH group although 50 watt exercise is suboptimal exercise. Therefore we believe that the many indexes and Doppler parameters in the real peak exercise have similar pattern with more exaggerated value.

1. Grossman W,Jones D,McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricleJ Clin InvestYear: 1975565664124746
2. Goodwin JF. Congestive and hypertrophic cardiomyopathies. A decade of studyLancetYear: 197017327394191245
3. Yelamarty RV,Moore RL,Yu FT,Elensky M,Semanchick AM,Cheung JY. Relaxation abnormalities in single cardiac myocytes from renovascular hypertensive ratsAm J PhysiolYear: 19922624 Pt 1C980C9901533096
4. Hess OM,Schneider J,Koch R,Bamert C,Grimm J,Krayenbuehl HP. Diastolic function and myocardial structure in patients with myocardial hypertrophy. Special reference to normalized viscoelastic dataCirculationYear: 1981633603716450003
5. Shapiro LM,McKenna WJ. Left ventricular hypertrophy. Relation of structure to diastolic function in hypertensionBr Heart JYear: 1984516376426234010
6. Douglas PS,Tallant B. Hypertrophy, fibrosis and diastolic dysfunction in early canine experimental hypertensionJ Am Coll CardiolYear: 1991175305361825098
7. D'Andrea A,Caso P,Severino S,Scotto di Uccio F,Vigorito F,Ascione L,Scherillo M,Calabrò R. Association between intraventricular myocardial systolic dyssynchrony and ventricular arrhythmias in patients with hypertrophic cardiomyopathyEchocardiographyYear: 20052257157816060893
8. Mishiro Y,Oki T,Iuchi A,Tabata T,Yamada H,Abe M,Onose Y,Ito S,Nishitani H,Harada M,Taoka Y. Regional left ventricular myocardial contraction abnormalities and asynchrony in patients with hypertrophic cardiomyopathy evaluated by magnetic resonance spatial modulation of magnetization myocardial taggingJpn Circ JYear: 19996344244610406583
9. Gillebert TC,Lew WY. Nonuniformity and volume loading independently influence isovolumic relaxation ratesAm J PhysiolYear: 19892576 Pt 2H1927H19352603977
10. Cardim N,Oliveira AG,Longo S,Ferreira T,Pereira A,Reis RP,Correia JM. Doppler tissue imaging: regional myocardial function in hypertrophic cardiomyopathy and in athlete's heartJ Am Soc EchocardiogrYear: 20031622323212618730
11. Abe H,Tomotsune K. Asynchronous relaxation of the ischemic left ventricleJpn Circ JYear: 1982461031126976448
12. De Marchi SF,Allemann Y,Seiler C. Relaxation in hypertrophic cardiomyopathy and hypertensive heart disease: relations between hypertrophy and diastolic functionHeartYear: 20008367868410814629
13. Lang RM,Bierig M,Devereux RB,Flachskampf FA,Foster E,Pellikka PA,Picard MH,Roman MJ,Seward J,Shanewise JS,Solomon SD,Spencer KT,Sutton MS,Stewart WJ. Chamber Quantification Writing GroupAmerican Society of Echocardiography's Guidelines and Standards CommitteeEuropean Association of EchocardiographyRecommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of CardiologyJ Am Soc EchocardiogrYear: 2005181440146316376782
14. Sohn DW,Chai IH,Lee DJ,Kim HC,Kim HS,Oh BH,Lee MM,Park YB,Choi YS,Seo JD,Lee YW. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic functionJ Am Coll CardiolYear: 1997304744809247521
15. Chang SA,Kim HK,Kim DH,Kim YJ,Sohn DW,Oh BH,Park YB. Left ventricular systolic and diastolic dyssynchrony in asymptomatic hypertensive patientsJ Am Soc EchocardiogrYear: 20092233734219269134
16. Tan HW,Zheng GL,Li L,Wang ZH,Gong HP,Zhang Y,Zhong M,Zhang W. Impaired left ventricular synchronicity in hypertensive patients with ventricular hypertrophyJ HypertensYear: 20082655355918300868
17. Ha TH,Seo HS,Choo WJ,Choi J,Suh J,Cho YH,Lee NH. The Effect of Metabolic Syndrome on Myocardial Contractile Reserve during Exercise in Non-Diabetic Hypertensive SubjectsJ Cardiovasc UltrasoundYear: 20111917618222259660
18. Kwon BJ,Choi KY,Kim DB,Jang SW,Cho EJ,Youn HJ,Kim JH. Systolic synchrony is impaired in nonleft ventricular hypertrophy of never-treated hypertensive patientsJ HypertensYear: 2011292246225421918472
19. Nagueh SF. Mechanical dyssynchrony in congestive heart failure: diagnostic and therapeutic implicationsJ Am Coll CardiolYear: 200851182218174031
20. Yuda S,Short L,Leano R,Marwick TH. Myocardial abnormalities in hypertensive patients with normal and abnormal left ventricular filling: a study of ultrasound tissue characterization and strainClin Sci (Lond)Year: 200210328329312193154
21. Masoudi FA,Havranek EP,Smith G,Fish RH,Steiner JF,Ordin DL,Krumholz HM. Gender, age, and heart failure with preserved left ventricular systolic functionJ Am Coll CardiolYear: 20034121722312535812
22. Lund LH,Mancini D. Heart failure in womenMed Clin North AmYear: 20048813211345xii15331319
23. Gottlieb SS,Khatta M,Friedmann E,Einbinder L,Katzen S,Baker B,Marshall J,Minshall S,Robinson S,Fisher ML,Potenza M,Sigler B,Baldwin C,Thomas SA. The influence of age, gender, and race on the prevalence of depression in heart failure patientsJ Am Coll CardiolYear: 2004431542154915120809

Article Categories:
  • Original Article

Keywords: Left ventricular hypertrophy, Intraventricular dyssynchrony, Hypertension.

Previous Document:  Surgical timing of degenerative mitral regurgitation: what to consider.
Next Document:  Evaluation of right ventricular systolic function by the analysis of tricuspid annular motion in pat...