Document Detail

Assessment of plant-driven uptake and translocation of clofibric acid by Scirpus validus.
MedLine Citation:
PMID:  23274803     Owner:  NLM     Status:  Publisher    
Pharmaceutical compounds are now considered as emerging contaminants of environmental concern. The overall objective of this study was to evaluate the uptake and translocation of clofibric acid (CA) by the macrophyte Scirpus validus growing hydroponically. A set of the three replicates was established for each exposure time and for each CA concentration. Plants were grown in 4 L vessels (four plants per vessel corresponding to the three exposure period studies, i.e., 7, 14, 18, and 21 days) which contained an aerated modified Hoagland nutrient solution that was spiked with CA at concentrations of 0.5, 1.0, and 2.0 mg L(-1). At each exposure period, CA concentration was measured in the nutrient solutions. A sea sand disruption method was employed for the extraction of CA from plant tissues. The determination of the pharmaceutical concentration was carried out using solid phase extraction (SPE) followed by chromatographic analysis. The quantification of CA concentrations in both nutrient solutions (after SPE) and plant tissues (after extraction) was conducted by chromatographic analysis. CA concentrations of 5.4-26.8 μg g(-1) (fresh weight) were detected in the roots and 7.2-34.6 μg g(-1) (fresh weight) in the shoots after 21 days. Mass balance calculations showed that S. validus uptake alone accounted for a significant contribution (6-13 % for the roots and 22-49 % for the shoots) of the total loss of CA. The bioaccumulation factors (BAFs) based on fresh weight for the roots ranged from 6.6 to 23.2, while values for the shoots ranged from 9.5 to 32.1. All the BAFs for the shoots were greater than those in the roots, implying that CA has greater tendency to be translocated to the shoots, rather than the roots of S. validus. All the shoot-to-root concentration ratios were more than 1, denoting that the shoots of S. validus do preferentially accumulate CA. We demonstrated that CA can be actively taken up, subsequently translocated and accumulated by aboveground tissues of S. validus. Since S. validus could account for the removal of 28-62 % of the total mass loss of CA from the system, such phytoremediation technology has great potential for the removal of pharmaceuticals such as CA from inflowing waters.
Dong Qing Zhang; Richard M Gersberg; Tao Hua; Junfei Zhu; Wun Jern Ng; Soon Keat Tan
Related Documents :
23434313 - Temporal trends (1989-2011) in levels of mercury and other heavy metals in feathers of ...
23482923 - In vitro antioxidant properties evaluation of 10 iranian medicinal plants by different ...
23122733 - Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-30
Journal Detail:
Title:  Environmental science and pollution research international     Volume:  -     ISSN:  1614-7499     ISO Abbreviation:  Environ Sci Pollut Res Int     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-12-31     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9441769     Medline TA:  Environ Sci Pollut Res Int     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
DHI-NTU Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, N1.2-B1-02, Singapore, 639798, Singapore,
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Quantification of IgM and IgA Anti-Pneumococcal Capsular Polysaccharides by a New ELISA Assay: a Val...
Next Document:  Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste.