Document Detail

Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles.
Jump to Full Text
MedLine Citation:
PMID:  23629007     Owner:  NLM     Status:  PubMed-not-MEDLINE    
In this work, we will show that ferromagnetic microjets can pick-up paramagnetic beads while not showing any interaction with diamagnetic silica microparticles for the active separation of microparticles in solution.
Guanjia Zhao; Hong Wang; Samuel Sanchez; Oliver G Schmidt; Martin Pumera
Related Documents :
23282487 - Unraveling the local energetics of transport in a polymer ion conductor.
24937357 - An overview on the reactors to study drinking water biofilms.
2858287 - In vitro absorption of inorganic phosphate and other electrolytes in the carp intestine.
23927587 - Experimental evidence of the relevance of orientational correlations in photo-induced b...
21643367 - Glancing angle deposited ito films for efficiency enhancement of a-si:h/μc-si:h tandem...
12484487 - Non-connected versus interconnected macroporosity in poly(2-hydroxyethyl methacrylate) ...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Chemical communications (Cambridge, England)     Volume:  49     ISSN:  1364-548X     ISO Abbreviation:  Chem. Commun. (Camb.)     Publication Date:  2013 Jun 
Date Detail:
Created Date:  2013-05-10     Completed Date:  2013-11-25     Revised Date:  2013-12-02    
Medline Journal Info:
Nlm Unique ID:  9610838     Medline TA:  Chem Commun (Camb)     Country:  England    
Other Details:
Languages:  eng     Pagination:  5147-9     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Grant Support
311529//European Research Council

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Chem Commun (Camb)
Journal ID (iso-abbrev): Chem. Commun. (Camb.)
ISSN: 1359-7345
ISSN: 1364-548X
Publisher: Royal Society of Chemistry
Article Information
This journal is © The Royal Society of Chemistry 2013
Received Day: 16 Month: 3 Year: 2013
Accepted Day: 11 Month: 4 Year: 2013
Print publication date: Day: 7 Month: 6 Year: 2013
Electronic publication date: Day: 29 Month: 4 Year: 2013
Volume: 49 Issue: 45
First Page: 5147 Last Page: 5149
PubMed Id: 23629007
ID: 3782880
Publisher Id: c3cc41962b
DOI: 10.1039/c3cc41962b

Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles
Guanjia Zhaoa
Hong Wanga
Samuel Sanchezb
Oliver G. Schmidtbc
Martin Pumeraa
a Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 , Singapore . Email: ; Fax: +65-6791-1961
b Institute for Integrative Nanosciences , IFW Dresden , Helmholtzstrasse 20 , D-01069 Dresden , Germany
c Material Systems for Nanoelectronics , Chemnitz Technical University , Reichenhainer Strasse 70 , 09107 Chemnitz , Germany

Synthetic nano- and micromotors have been gathering accumulated interest amongst the researchers in recent years.16 The successful fabrication of micromotors of various designs has been achieved and reported with a high reproducibility. Different kinds of motors have also emerged in the literature, such as bimetallic microwires,7 Janus spheres,8 screw-shaped motors,9 and nano/microtubes.10 The propulsion of such motors can be attributed to different types of mechanisms, including self-electrophoresis,11 diffusiophoresis12 or bubble propulsion.2 Recent efforts have been mainly focused on bubble-propelled microjets and their applications in different fields. These microdevices are self-propelled by the decomposition of fuel, typically hydrogen peroxide, on its inner surface such as catalytic Pt metal.2

One of the main applications of micromotors is the directed and selective pick-up of cargo particle.13 This has been achieved via the (i) mechanical attachment to the microjet tip,14 (ii) electrostatic interaction between the negatively charged polypyrrole segment of nanorod microjets and the positively charged cargo particle,15 (iii) usage of a biorecognition element, such as single stranded DNA, protein molecules,16,17 or (iv) chemical bonds.18 Here we wish to present for the first time the highly selective pick-up of cargo by microjet engines with no surface modifications but with magnetic functionality. Such microjet engines are based on the hydrogen peroxide propelled microtubes containing a permanent magnetic moment that are able to selectively pick up paramagnetic beads from their mixture with diamagnetic microparticles (Scheme 1) in the absence of an external magnetic field.

Rolled-up microjets of diameter 5 μm and length 50 μm are fabricated by the thin film deposition method as described previously.19 The rolled-up microjets consist of a layered structure of Ti, Fe, Cr and Pt nanomembranes with thicknesses of 3, 5, 5 and 1 nm, respectively (for details on fabrication, see ESI; for a SEM image of microjets, see Fig. S1, ESI). It should be noted that upon exposure of such microtubes to an external magnetic field with an intensity of ∼270 mT for several seconds, the microtube becomes ferromagnetic with its own magnetic moment.20 Such a “micromagnet” tube responds to weak changes in the external magnetic field by changing its orientation.20

When such a microtube is immersed into a solution containing hydrogen peroxide, the hydrogen peroxide decomposes causing the microjet to propel forward.

The magnetized microjets swimming in H2O2 solution behave in a similar way to self-propelled micromagnets, attracting paramagnetic micro-objects. In Fig. 1A (and related Video S1, see ESI) the movement of a non-magnetized (that is, not containing permanent magnetic moment) microjet in a mixture containing 2.7 μm diameter paramagnetic beads (Dynal®) can be seen. Those non-magnetized microjets do not show any interaction with the paramagnetic beads in such case, moving at an average velocity of 130 μm s–1. When the Fe-segment containing microjet is exposed to a magnetic field of neodymium for 10 seconds, it is able to attract and carry a large volume (>30 beads) of paramagnetic beads attached to its surface (Fig. 1B and corresponding Video S2, ESI). Differently, we observed that the non-magnetized microjets are not capable of any interaction with the paramagnetic beads while the magnetized microjets are capable of on-the-fly capture of the paramagnetic beads (Fig. 1C, and corresponding Video S3, ESI). We used Dynal® paramagnetic beads with a streptavidin functionalized surface.

The surface of such beads can be functionalized with practically any biomolecule which gives it a great potential in highly tailored bioapplications. Note that such an on-the-fly paramagnetic bead capture is possible in the absence of an external magnetic field as the micromotor acts as a permanent magnet.

The ordered “chain” structures of paramagnetic beads seen in Fig. 1B are remnant structures after application of an external magnetic field in order to magnetize microjet engines. All videos S1–S3 (ESI) and Fig. 1 were taken in the absence of an external magnetic field.

We noted that self-electrophoretically powered nanorods were also found to be capable of picking up beads loaded with Fe3O4. However, such pick-up and the hold of microbeads were demonstrated to occur only under a constant influence of an external magnetic field,21 which is fundamentally different from the example presented here in our work, where the microjet engine is magnetized and is able to carry paramagnetic beads in the absence of an external magnetic field.

The ability to selectively pick-up paramagnetic particles from their mixtures with diamagnetic particles was explored with the magnetic functionality of self-propelled microjets. Fig. 2 (and corresponding Video S4, ESI) shows the movement of self-propelled magnetized microjets (without further influence of the external magnetic field) in a mixture of paramagnetic dynabeads and diamagnetic silica microparticles. The magnetized microjets were able to selectively pick-up the paramagnetic beads while not attracting the diamagnetic SiO2 microparticles at the same time. Control experiments using non-magnetized microjet engines showed that such non-magnetized microjets do not distinguish between the paramagnetic and diamagnetic particles and move through their dispersion without any sign of magnetic interactions (Fig. 3 and corresponding Video S5, ESI).

In summary, we have demonstrated that the devices made of magnetized rolled-up microtubes containing Fe nanomembranes behave as small self-propelled micromagnets that are capable of actively picking-up and carrying paramagnetic cargo without the influence of any external magnetic field. Such self-propelled micromagnets are capable of distinguishing the paramagnetic microparticles from the diamagnetic ones, and thus selectively pick up the paramagnetic ones. These self-propelled microjets are expected to have applications in various micromotor-based assays.

M.P. thanks NTU-JSPS and NAP (NTU) funds for support. S.S. and O.G.S. thank the Volkswagen Foundation (project number 86362). S.S. thanks the European Research Council (ERC) for Starting Grant (LT-NRBS).

Paxton W. F.,Sundararajan S.,Mallouk T. E.,Sen A.. Angew. Chem., Int. Ed.Year: 2006455420
Mei Y. F.,Solovev A. A.,Sanchez S.,Schmidt O. G.. Chem. Soc. Rev.Year: 201140210921340080
Sanchez S.,Pumera M.. Chem.–Asian J.Year: 20094140219621413
Fisher P.,Ghosh A.. NanoscaleYear: 2011355721152575
Ebbens S. J.,Howse J. R.. Soft MatterYear: 20106726
Wang J.. ACS NanoYear: 20093419206241
Kline T. R.,Paxton W. F.,Mallouk T. E.,Sen A.. Angew. Chem., Int. Ed.Year: 200544744
Baraban L.,Makarov D.,Streubel R.,Monch I.,Grimm D.,Sanchez S.,Schmidt O. G.. ACS NanoYear: 20126338322424213
Peyer K. E.,Zhang L.,Nelson B. J.. NanoscaleYear: 20135125923165991
Mei Y. F.,Huang G.,Solovev A. A.,Urena E. B.,Monch I.,Ding F.,Reindl T.,Fu R. K. Y.,Chu P. K.,Schmidt O. G.. Adv. Mater.Year: 2008204085
Pumera M.. NanoscaleYear: 20102164320680201
Ibele M.,Mallouk T. E.,Sen A.. Angew. Chem., Int. Ed.Year: 2009483308
Patra D.,Sengupta S.,Duan W.,Zhang H.,Pavlick R.,Sen A.. NanoscaleYear: 20135127323166050
Sanchez S.,Solovev A. A.,Harazim S. M.,Schmidt O. G.. J. Am. Chem. Soc.Year: 201113370121166412
Sundararajan S.,Lammert P. E.,Zudans A. W.,Crespi V. H.,Sen A.. Nano Lett.Year: 20088127118416540
Kagan D.,Campuzano S.,Balasubramanian S.,Kuralay F.,Flechsig G.,Wang J.. Nano Lett.Year: 201111208321491941
García M.,Orozco J.,Guix M.,Gao W.,Sattayasamitsathit S.,Escarpa A.,Merkoçi A.,Wang J.. NanoscaleYear: 20135132523123833
Sundararajan S.,Sengupta S.,Ibele M. E.,Sen A.. SmallYear: 20106147920564727
Solovev A. A.,Sanchez S.,Pumera M.,Mei Y. F.,Schmidt O. G.. Adv. Funct. Mater.Year: 2010202430
Zhao G.,Sanchez S.,Schmidt O. G.,Pumera M.. Chem. Commun.Year: 20124810090
Kagan D.,Laocharoensuk R.,Zimmerman M.,Clawson C.,Balasubramanian S.,Kang D.,Bishop D.,Sattayasamitsathit S.,Zhang L.,Wang J.. SmallYear: 20106274120979242


[Figure ID: sch1]
Scheme 1  Self-propelled microjets with a permanent magnetic moment attract paramagnetic particles (brown, dynabeads) and carry them while not influencing the diamagnetic (grey, SiO2) particles.

[Figure ID: fig1]
Fig. 1  Movement of (A) non-magnetized and (B) magnetized microjet engines in a paramagnetic beads suspension. (C) On-the-fly pick-up of paramagnetic beads by magnetized microjets. Scale bar of 50 μm. Conditions: 6% H2O2, 1% SDS, beads concentration approximates to 3 × 105 μL–1.

[Figure ID: fig2]
Fig. 2  Magnetized microjets are capable of selective pick-up of paramagnetic beads (see arrow, dark spots: dynabeads of diameter of 2.7 μm) while diamagnetic beads (see example inside the red circle, SiO2 microparticles with a maximum diameter of 20 μm). A, B and C represent time 0, 2 and 4 s of time frame. Scale bar of 50 μm. Conditions: 6% H2O2, 1% SDS, beads concentration approximates to 3 × 104 μL–1 for the silica beads and 1 × 104 μL–1 dynabeads.

[Figure ID: fig3]
Fig. 3  Non-magnetized microjets are not capable of pick-up of paramagnetic beads (dark spots) from their mixture with silica beads (transparent beads), moving through their mixture and ignoring them all. A, B and C represent time 0, 3 and 5 s of time frame. Scale bar of 50 μm. Conditions: 6% H2O2, 1% SDS, beads concentration approximates to 3 × 104 μL–1 for the silica beads and 1 × 104 μL–1 dynabeads.

Article Categories:
  • Chemistry

Previous Document:  Objective Quantification of Fluorescence Intensity on the Corneal Surface Using a Modified Slit-lamp...
Next Document:  Retrophylogenomics place tarsiers on the evolutionary branch of anthropoids.