Document Detail


Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs).
MedLine Citation:
PMID:  25349469     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12-25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs.
Authors:
Mateusz L Hupert; Joshua M Jackson; Hong Wang; Małgorzata A Witek; Joyce Kamande; Matthew I Milowsky; Young E Whang; Steven A Soper
Related Documents :
8684519 - Long-term performance of hemofilters in continuous hemofiltration.
1551239 - Colorimetric determination of galactose and galactose-1-phosphate from dried blood.
2674549 - Optimization of the emit immunoassay procedure for the analysis of cannabinoids in meth...
10400649 - Rotational echo double resonance detection of cross-links formed in mussel byssus under...
6948389 - Rbc filterability, oxygen saturation, atp intracellular stock, and cerebral microcircul...
20961069 - Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots...
3238949 - Persistent alanine aminotransferase elevation in healthy swedish blood donors--mainly c...
21436759 - Third trimester fetal heart rate and doppler middle cerebral artery blood flow velocity...
7462439 - Unsuitability of evacuated tubes for monitoring heparin therapy by activated partial th...
Publication Detail:
Type:  JOURNAL ARTICLE    
Journal Detail:
Title:  Microsystem technologies : sensors, actuators, systems integration     Volume:  20     ISSN:  0946-7076     ISO Abbreviation:  Microsyst Technol     Publication Date:  2014 Oct 
Date Detail:
Created Date:  2014-10-28     Completed Date:  -     Revised Date:  2014-10-29    
Medline Journal Info:
Nlm Unique ID:  101607774     Medline TA:  Microsyst Technol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  1815-1825     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Administrative Coordination in Non-Profit Human Service Delivery Networks: The Role of Competition a...
Next Document:  Factors significantly contributing to a failed conventional endoscopic stone clearance in patients w...