Document Detail


Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits.
MedLine Citation:
PMID:  23277211     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Lianas are an important component of Neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P (50)) and maximum hydraulic conductivity (K (h)), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.
Authors:
Masha T van der Sande; Lourens Poorter; Stefan A Schnitzer; Lars Markesteijn
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-1
Journal Detail:
Title:  Oecologia     Volume:  -     ISSN:  1432-1939     ISO Abbreviation:  Oecologia     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0150372     Medline TA:  Oecologia     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands, masha.vandersande@wur.nl.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Bilateral retinoblastoma: clinical presentation, management and treatment.
Next Document:  Recurrent violations of invariant rules for offspring size: evidence from turtles and the implicatio...