Document Detail


Archaeal transcription: making up for lost time.
MedLine Citation:
PMID:  23356311     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
In recent years, emerging structural information on the aRNAP (archaeal RNA polymerase) apparatus has shown its strong evolutionary relationship with the eukaryotic counterpart, RNA Pol (polymerase) II. A novel atomic model of SshRNAP (Sulfolobus shibatae RNAP) in complex with dsDNA (double-stranded DNA) constitutes a new piece of information helping the understanding of the mechanisms for DNA stabilization at the position downstream of the catalytic site during transcription. In Archaea, in contrast with Eukarya, downstream DNA stabilization is universally mediated by the jaw domain and, in some species, by the additional presence of the Rpo13 subunit. Biochemical and biophysical data, combined with X-ray structures of apo- and DNA-bound aRNAP, have demonstrated the capability of the Rpo13 C-terminus to bind in a sequence-independent manner to downstream DNA. In the present review, we discuss the recent findings on the aRNAP and focus on the mechanisms by which the RNAP stabilizes the bound DNA during transcription.
Authors:
Magdalena N Wojtas; Nicola G A Abrescia
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Biochemical Society transactions     Volume:  41     ISSN:  1470-8752     ISO Abbreviation:  Biochem. Soc. Trans.     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-01-29     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7506897     Medline TA:  Biochem Soc Trans     Country:  England    
Other Details:
Languages:  eng     Pagination:  356-61     Citation Subset:  IM    
Affiliation:
*Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Translation initiation in the crenarchaeon Sulfolobus solfataricus: eukaryotic features but bacteria...
Next Document:  Archaeology of RNA polymerase: factor swapping during the transcription cycle.