Document Detail

Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes.
MedLine Citation:
PMID:  18161574     Owner:  NLM     Status:  MEDLINE    
Cartap and cypermethrin, which are among the most widely used pesticides in many countries, are considered safe because of their low mammalian toxicity and their low persistence in the environment. However, recent findings of endocrine-disrupting effects and developmental neurotoxicity have raised concerns about the potential ecological impacts of these pesticides. We evaluated the aquatic toxicity of cartap [S,S'-(2-dimethylaminotrimethylene) bis(thiocarbamate), unspecified hydrochloride] and cypermethrin [(RS)-alpha-cyano-3-phenoxybenzyl-(1RS,3RS,1RS,3SR)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylate], both individually and combined, on different life stages of the freshwater cladoceran Daphnia magna and a freshwater teleost, Japanese medaka (Oryzias latipes). The 96-hr Daphnia median effective concentrations (EC50s) for cartap and cypermethrin were 91.0 microg/L and 0.00061 microg/L, respectively. Rapid recovery of Daphnia was observed after short-term pulsed exposure to cartap and cypermethrin; there were no adverse effects on reproduction or survival 20 d after a 24 hr exposure to cartap up to 1240 microg/L and cypermethrin up to 1.9 microg/L. Chronic continuous exposure (for 21 d) of 7-d-old Daphnia to cypermethrin significantly reduced the intrinsic population growth rate in a concentration-dependent manner. However, because the intrinsic population growth rates were all above zero, populations did not decrease even at the highest experimental concentration of 200 ng/L. Exposure of Daphnia neonates (< 24 hr old) to cypermethrin for 21 d caused significant, sub-lethal reproduction-related problems, such as increased time to first brood, reduced brood size, and reduced total brood number, at 0.0002, 0.002, and 0.2 ng/L cypermethrin, but the intrinsic population growth rate was not significantly affected. Oryzias latipes was relatively more resistant to both pesticides. In particular, embryos appeared to be more resistant than juveniles or adults, which may be partly due to the protective role of the chorion. The incidence of larval fish deformity was significantly higher after a 96 hr exposure to as low as 250 microg/L of cartap or 40 microg/L of cypermethrin. The mixture of both compounds showed no synergistic toxicity. The extremely high acute-to-chronic ratio suggests that the standard acute lethal toxicity assessment might not reflect the true environmental hazards of these frequently used pesticides. Ecological hazard assessments of long-term low dose or pulsed exposures to cartap and cypermethrin may reveal more realistic consequences of these compounds in surface water.
Younghee Kim; Jinyong Jung; Sorin Oh; Kyungho Choi
Related Documents :
935814 - Toxicological problems with the redy system.
16813294 - Susceptibility of pest nezara viridula (heteroptera: pentatomidae) and parasitoid trich...
11163304 - Free sterols from the holothurians synapta maculata, cladolabes bifurcatus and cucumari...
11971644 - Combined effects of algal (chlorella vulgaris) density and ammonia concentration on the...
25245834 - Effect of vitamin e intake from food and supplement sources on plasma α- and γ-tocopher...
22045224 - The potential impact of nutrient profiles on dairy-related energy and nutrient intake i...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes     Volume:  43     ISSN:  0360-1234     ISO Abbreviation:  J Environ Sci Health B     Publication Date:  2008 Jan 
Date Detail:
Created Date:  2007-12-28     Completed Date:  2008-04-07     Revised Date:  2009-07-21    
Medline Journal Info:
Nlm Unique ID:  7607167     Medline TA:  J Environ Sci Health B     Country:  United States    
Other Details:
Languages:  eng     Pagination:  56-64     Citation Subset:  IM    
School of Public Health, Seoul National University, Seoul, Korea.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Biological Assay
Daphnia / drug effects*,  growth & development
Dose-Response Relationship, Drug
Drug Toxicity
Embryo, Nonmammalian / drug effects
Insecticides / toxicity*
Larva / drug effects,  growth & development
Lethal Dose 50
Oryzias / growth & development*
Pyrethrins / toxicity*
Survival Analysis
Thiocarbamates / toxicity*
Time Factors
Water Pollutants, Chemical / toxicity
Reg. No./Substance:
0/Insecticides; 0/Pyrethrins; 0/Thiocarbamates; 0/Water Pollutants, Chemical; 15263-53-3/carbamothioic acid, S,S'-(2-(dimethylamino)-1,3-propanediyl) ester; 52315-07-8/cypermethrin

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, Palaemone...
Next Document:  Effect of prochloraz fungicide on biotransformation enzymes and oxidative stress parameters in three...