Document Detail

Application of yeast-two hybrid assay to chemical genomic screens: a high-throughput system to identify novel molecules modulating plant hormone receptor complexes.
MedLine Citation:
PMID:  24306860     Owner:  NLM     Status:  In-Data-Review    
Phytohormones are endogenous signalling molecules that regulate plant development, adaptation to the environment, and survival. Upon internal or external stimuli, hormones are quickly accumulated and perceived, which in turn activates specific signalling cascades regulating the appropriate physiological responses. In the last decade, great advances in understanding plant hormone perception mechanisms have been achieved. Among different methodological approaches, yeast-two hybrid (Y2H) assays played a pivotal role in the identification and analysis of plant hormone perception complexes. The Y2H assay is a rapid and straightforward technique that can be easily employed to identify small molecules directly modulating plant hormone perception complexes in a high-throughput manner. However, an Y2H chemical screen tends to isolate false positive molecules, and therefore a secondary in planta screen is required to confirm the genuine bioactivity of putative positive hits. This two-step screening approach can substantially save time and manual labor. This chapter focuses on the prospects of Y2H-based chemical genomic high-throughput screens applied to plant hormone perception complexes. Specifically, the method employed to carry out a chemical genomic screen to identify agonist and antagonist molecules of the phytohormone jasmonic acid in its conjugated form jasmonic acid-isoleucine (JA-Ile) is described. An easy in planta confirmation assay is also illustrated. However, this methodology can be easily extended to detect novel chemical compounds perturbing additional plant hormone receptor complexes. Finally, the high-throughput approach described here can also be implemented for the identification of molecules interfering with protein-protein interaction of plant complexes other than hormone receptors.
Andrea Chini
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Methods in molecular biology (Clifton, N.J.)     Volume:  1056     ISSN:  1940-6029     ISO Abbreviation:  Methods Mol. Biol.     Publication Date:  2014  
Date Detail:
Created Date:  2013-12-05     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9214969     Medline TA:  Methods Mol Biol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  35-43     Citation Subset:  IM    
Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus UAM, Madrid, Spain.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Screening for Bioactive Small Molecules by In Vivo Monitoring of Luciferase-Based Reporter Gene Expr...
Next Document:  High-throughput screening of small-molecule libraries for inducers of plant defense responses.