Document Detail

Aortic reservoir function, estimated myocardial demand and coronary perfusion pressure following steady-state and interval exercise.
MedLine Citation:
PMID:  22856341     Owner:  NLM     Status:  In-Data-Review    
Aortic reservoir function is a measure of the aorta's ability to distribute blood during diastole, attenuating the pulsatility of blood flow, and is important in balancing cardiac flow. Effects of acute high versus moderate exercise intensity on reservoir function and cardiac energetics is unknown. Eighteen athletes completed a interval (INT) and steady-state (SS) cycling bout at 60% of VO(2) peak. Reservoir function was calculated as the ratio of diastolic run-off to stroke volume and expressed as a percentage. Coronary perfusion pressure was derived from tissue Doppler imaging and echocardiography. Systolic tension-time integral (TTI) from the aortic pressure waveform served as a measure of myocardial oxygen consumption. All measures were made at rest, 30-min postexercise and 60-min postexercise. Average reservoir function before SS was 76%, which was reduced to 62% 30-min post-SS and 67% 60-min post-SS (P<0.05). Significantly greater reductions in reservoir function were seen following INT (from 71% pre-INT to 45% 30-min post-INT and 53% 60-min INT, P<0.05). Estimated coronary perfusion pressure was reduced 30 min following INT but not SS; both bouts reduced coronary perfusion pressure at 60-min postexercise (P<0.05). TTI increased following both INT and SS at 30- and 60-min postexercise with greater increases following INT (P<0.05). Following exercise, reservoir function was associated with TTI (P<0.05), but not coronary perfusion pressure (P>0.05). We conclude that reservoir function is attenuated following acute SS and INT, but these reductions were greater post-INT, suggesting that exercise intensity affects reservoir function. Reduction of reservoir function following exercise is related to TTI, a reflection of myocardial oxygen consumption but apparently not associated with coronary perfusion pressure.
A D Lane; K S Heffernan; L M Rossow; C A Fahs; S M Ranadive; H Yan; T Baynard; K Wilund; B Fernhall
Publication Detail:
Type:  Journal Article     Date:  2012-04-22
Journal Detail:
Title:  Clinical physiology and functional imaging     Volume:  32     ISSN:  1475-097X     ISO Abbreviation:  Clin Physiol Funct Imaging     Publication Date:  2012 Sep 
Date Detail:
Created Date:  2012-08-03     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101137604     Medline TA:  Clin Physiol Funct Imaging     Country:  England    
Other Details:
Languages:  eng     Pagination:  353-60     Citation Subset:  IM    
Copyright Information:
© 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Exercise and Cardiovascular Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Signal-morphology impedance cardiography during incremental cardiopulmonary exercise testing in pulm...
Next Document:  Differential vasodilatory responses to local heating in facial, glabrous and hairy skin.