Document Detail

The Antiretroviral Protease Inhibitor Ritonavir Accelerates Glutathione Export from Cultured Primary Astrocytes.
MedLine Citation:
PMID:  23341120     Owner:  NLM     Status:  Publisher    
Antiretroviral protease inhibitors are a class of important drugs that are used for the treatment of human immunodeficiency virus infections. Among those compounds, ritonavir is applied frequently in combination with other antiretroviral protease inhibitors, as it has been reported to boost their therapeutic efficiency. To test whether ritonavir affects the viability and the glutathione (GSH) metabolism of brain cells, we have exposed primary astrocyte cultures to this protease inhibitor. Application of ritonavir in low micromolar concentrations did not compromise cell viability, but caused a time- and concentration-dependent loss of GSH from the cells which was accompanied by a matching increase in the extracellular GSH content. Half-maximal effects were observed for ritonavir in a concentration of 3 μM. The ritonavir-induced stimulated GSH export from astrocytes was completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. In addition, continuous presence of ritonavir was essential to maintain the stimulated GSH export, since removal of ritonavir terminated the stimulated GSH export. Ritonavir was more potent to stimulate GSH export from astrocytes than the antiretroviral protease inhibitors indinavir and nelfinavir, but combinations of ritonavir with indinavir or nelfinavir did not further stimulate astrocytic GSH export compared to a treatment with ritonavir alone. The strong effects of ritonavir and other antiretroviral protease inhibitors on the GSH metabolism of astrocytes suggest that a chronic treatment of patients with such compounds may affect their brain GSH metabolism.
Christian Arend; Maria Brandmann; Ralf Dringen
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-23
Journal Detail:
Title:  Neurochemical research     Volume:  -     ISSN:  1573-6903     ISO Abbreviation:  Neurochem. Res.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-23     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7613461     Medline TA:  Neurochem Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Centre for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Silver-Catalyzed Hydrotrifluoromethylation of Unactivated Alkenes with CF(3) SiMe(3).
Next Document:  Synthesis and Morphogenesis of Organic and Inorganic Polymers by Means of Biominerals and Biomimetic...