Document Detail


Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation.
MedLine Citation:
PMID:  22266491     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Recent studies demonstrate that alpha lipoic acid can prevent nitroglycerin tolerance by restoring aldehyde dehydrogenase 2 (ALDH2) activity and ALDH2-mediated detoxification of aldehydes is thought as an endogenous mechanism against ischemia-reperfusion injury. This study was performed to explore whether the cardioprotective effect of alpha lipoic acid was related to activation of ALDH2 and the underlying mechanisms. In a Langendorff model of ischemia-reperfusion in rats, cardiac function, activities of creatine kinase (CK) and ALDH2, contents of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. In a cell model of hypoxia-reoxygenation, the apoptosis, ALDH activity, reactive oxygen species level, 4-HNE and MDA contents were examined. In the isolated hearts, ischemia-reperfusion treatment led to cardiac dysfunction accompanied by an increase in 4-HNE and MDA contents. Pretreatment with lipoic acid significantly up-regulated myocardial ALDH2 activity concomitantly with an improvement of cardiac dysfunction and a decrease in 4-HNE and MDA contents, these effects were blocked by the inhibitor of ALDH2. Similarly, in the cultured cardiomyocytes, hypoxia-reoxygenation treatment induced apoptosis accompanied by an increase in the production of reactive oxygen species, 4-HNE and MDA. Administration of lipoic acid significantly up-regulated cellular ALDH2 activity concomitantly with a reduction in apoptosis, production of reactive oxygen species, 4-HNE and MDA, these effects were reversed in the presence of ALDH2 or PKCε inhibitors. Our results suggest that the cardioprotective effects of lipoic acid on ischemia-reperfusion injury are through a mechanism involving ALDH2 activation. The regulatory effect of lipoic acid on ALDH2 activity is dependent on PKCε signaling pathway.
Authors:
Lan He; Bin Liu; Zhong Dai; Hong-Feng Zhang; Yi-Shuai Zhang; Xiu-Ju Luo; Qi-Lin Ma; Jun Peng
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-1-12
Journal Detail:
Title:  European journal of pharmacology     Volume:  -     ISSN:  1879-0712     ISO Abbreviation:  -     Publication Date:  2012 Jan 
Date Detail:
Created Date:  2012-1-23     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  1254354     Medline TA:  Eur J Pharmacol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2011. Published by Elsevier B.V.
Affiliation:
Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Diosmin, a bioflavonoid reverses alterations in blood pressure, nitric oxide, lipid peroxides and an...
Next Document:  Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: Evidence for the...