Document Detail


All-optical frequency modulated high pressure MEMS sensor for remote and distributed sensing.
MedLine Citation:
PMID:  22346662     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1 × 1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up to 350 bar and with a sensitivity of 4.8 pm/bar (i.e., 350 ×10(5) Pa and 4.8 × 10(-5) pm/Pa, respectively).
Authors:
Kasper Reck; Erik V Thomsen; Ole Hansen
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2011-11-08
Journal Detail:
Title:  Sensors (Basel, Switzerland)     Volume:  11     ISSN:  1424-8220     ISO Abbreviation:  Sensors (Basel)     Publication Date:  2011  
Date Detail:
Created Date:  2012-02-20     Completed Date:  2012-07-12     Revised Date:  2013-05-29    
Medline Journal Info:
Nlm Unique ID:  101204366     Medline TA:  Sensors (Basel)     Country:  Switzerland    
Other Details:
Languages:  eng     Pagination:  10615-23     Citation Subset:  -    
Affiliation:
DTU Nanotech, Technical University of Denmark, Øersteds Plads, Building 345B, DK-2800 Kgs. Lyngby, Denmark. kasper.reck@nanotech.dtu.dk
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Design of selective gas sensors using additive-loaded In2O3 hollow spheres prepared by combinatorial...
Next Document:  Surface x-ray diffraction results on the III-V droplet heteroepitaxy growth process for quantum dots...