Document Detail


Advanced electrophysiologic mapping systems: an evidence-based analysis.
MedLine Citation:
PMID:  23074499     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
OBJECTIVE: To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF).
CLINICAL NEED: Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation has not been found to be effective for the treatment of complex arrhythmias such as chronic atrial fibrillation or ventricular tachycardia. Advanced nonfluoroscopic mapping systems have been developed for guiding the ablation of these complex arrhythmias.
THE TECHNOLOGY: Four nonfluoroscopic advanced mapping systems have been licensed by Health Canada: CARTO EP mapping System (manufactured by Biosense Webster, CA) uses weak magnetic fields and a special mapping/ablation catheter with a magnetic sensor to locate the catheter and reconstruct a 3-dimensional geometry of the heart superimposed with colour-coded electric potential maps to guide ablation. EnSite System (manufactured by Endocardial Solutions Inc., MN) includes a multi-electrode non-contact catheter that conducts simultaneous mapping. A processing unit uses the electrical data to computes more than 3,000 isopotential electrograms that are displayed on a reconstructed 3-dimensional geometry of the heart chamber. The navigational system, EnSite NavX, can be used separately with most mapping catheters. The LocaLisa Intracardiac System (manufactured by Medtronics Inc, MN) is a navigational system that uses an electrical field to locate the mapping catheter. It reconstructs the location of the electrodes on the mapping catheter in 3-dimensional virtual space, thereby enabling an ablation catheter to be directed to the electrode that identifies abnormal electric potential. Polar Constellation Advanced Mapping Catheter System (manufactured by Boston Scientific, MA) is a multielectrode basket catheter with 64 electrodes on 8 splines. Once deployed, each electrode is automatically traced. The information enables a 3-dimensional model of the basket catheter to be computed. Colour-coded activation maps are reconstructed online and displayed on a monitor. By using this catheter, a precise electrical map of the atrium can be obtained in several heartbeats.
REVIEW STRATEGY: A systematic search of Cochrane, MEDLINE and EMBASE was conducted to identify studies that compared ablation guided by any of the advanced systems to fluoroscopy-guided ablation of tachycardia. English-language studies with sample sizes greater than or equal to 20 that were published between 2000 and 2005 were included. Observational studies on safety of advanced mapping systems and fluoroscopy were also included. Outcomes of interest were acute success, defined as termination of arrhythmia immediately following ablation; long-term success, defined as being arrhythmia free at follow-up; total procedure time; fluoroscopy time; radiation dose; number of radiofrequency pulses; complications; cost; and the cost-effectiveness ratio. Quality of the individual studies was assessed using established criteria. Quality of the overall evidence was determined by applying the GRADE evaluation system. (3) Qualitative synthesis of the data was performed. Quantitative analysis using Revman 4.2 was performed when appropriate. Quality of the Studies Thirty-four studies met the inclusion criteria. These comprised 18 studies on CARTO (4 randomized controlled trials [RCTs] and 14 non-RCTs), 3 RCTs on EnSite NavX, 4 studies on LocaLisa Navigational System (1 RCT and 3 non-RCTs), 2 studies on EnSite and CARTO, 1 on Polar Constellation basket catheter, and 7 studies on radiation safety. The quality of the studies ranged from moderate to low. Most of the studies had small sample sizes with selection bias, and there was no blinding of patients or care providers in any of the studies. Duration of follow-up ranged from 6 weeks to 29 months, with most having at least 6 months of follow-up. There was heterogeneity with respect to the approach to ablation, definition of success, and drug management before and after the ablation procedure.
SUMMARY OF FINDINGS: Evidence is based on a small number of small RCTS and non-RCTS with methodological flaws.Advanced nonfluoroscopy mapping/navigation systems provided real time 3-dimensional images with integration of anatomic and electrical potential information that enable better visualization of areas of interest for ablationAdvanced nonfluoroscopy mapping/navigation systems appear to be safe; they consistently shortened the fluoroscopy duration and radiation exposure.Evidence suggests that nonfluoroscopy mapping and navigation systems may be used as adjuncts to rather than replacements for fluoroscopy in guiding the ablation of complex arrhythmias.Most studies showed a nonsignificant trend toward lower overall failure rate for advanced mapping-guided ablation compared with fluoroscopy-guided mapping.Pooled analyses of small RCTs and non-RCTs that compared fluoroscopy- with nonfluoroscopy-guided ablation of atrial fibrillation and atrial flutter showed that advanced nonfluoroscopy mapping and navigational systems:Yielded acute success rates of 69% to 100%, not significantly different from fluoroscopy ablation.Had overall failure rates at 3 months to 19 months of 1% to 40% (median 25%).Resulted in a 10% relative reduction in overall failure rate for advanced mapping guided-ablation compared to fluoroscopy guided ablation for the treatment of atrial fibrillation.Yielded added benefit over fluoroscopy in guiding the ablation of complex arrhythmia. The advanced systems were shown to reduce the arrhythmia burden and the need for antiarrhythmic drugs in patients with complex arrhythmia who had failed fluoroscopy-guided ablationBased on predominantly observational studies, circumferential PV ablation guided by a nonfluoroscopy system was shown to do the following:Result in freedom from atrial fibrillation (with or without antiarrhythmic drug) in 75% to 95% of patients (median 79%). This effect was maintained up to 28 months.Result in freedom from atrial fibrillation without antiarrhythmic drugs in 47% to 95% of patients (median 63%).Improve patient survival at 28 months after the procedure as compared with drug therapy.Require special skills; patient outcomes are operator dependent, and there is a significant learning curve effect.Complication rates of pulmonary vein ablation guided by an advanced mapping/navigation system ranged from 0% to 10% with a median of 6% during a follow-up period of 6 months to 29 months.The complication rate of the study with the longest follow-up was 8%.The most common complications of advanced catheter-guided ablation were stroke, transient ischemic attack, cardiac tamponade, myocardial infarction, atrial flutter, congestive heart failure, and pulmonary vein stenosis. A small number of cases with fatal atrial-esophageal fistula had been reported and were attributed to the high radiofrequency energy used rather than to the advanced mapping systems.
ECONOMIC ANALYSIS: An Ontario-based economic analysis suggests that the cumulative incremental upfront costs of catheter ablation of atrial fibrillation guided by advanced nonfluoroscopy mapping could be recouped in 4.7 years through cost avoidance arising from less need for antiarrhythmic drugs and fewer hospitalization for stroke and heart failure. Expert Opinion Expert consultants to the Medical Advisory Secretariat noted the following: Nonfluoroscopy mapping is not necessary for simple ablation procedures (e.g., typical flutter). However, it is essential in the ablation of complex arrhythmias including these:Symptomatic, drug-refractory atrial fibrillationArrhythmias in people who have had surgery for congenital heart disease (e.g., macro re-entrant tachycardia in people who have had surgery for congenital heart disease).Ventricular tachycardia due to myocardial infarctionAtypical atrial flutterAdvanced mapping systems represent an enabling technology in the ablation of complex arrhythmias. The ablation of these complex cases would not have been feasible or advisable with fluoroscopy-guided ablation and, therefore, comparative studies would not be feasible or ethical in such cases. (ABSTRACT TRUNCATED)
Authors:
Related Documents :
22347659 - Modification of a volume-overload heart failure model to track myocardial remodeling an...
929099 - Studies on methods for determination of the distribution of cardiac output in the mouse.
10155749 - The technique of pericardiocentesis. when to perform it and how to minimize complications.
14766959 - All rainbow trout (oncorhynchus mykiss) are not created equal: intra-specific variation...
1588249 - Heart rates and swim speeds of emperor penguins diving under sea ice.
16038109 - Large pericardial effusions due to systemic lupus erythematosus: a report of eight cases.
22975789 - Right heart assessment by echocardiography: gender and body size matters.
21835319 - Electrocardiographic comparison of ventricular arrhythmias in patients with arrhythmoge...
6838729 - Cessation of smoking after myocardial infarction. effects on mortality after 10 years.
Publication Detail:
Type:  Journal Article     Date:  2006-03-01
Journal Detail:
Title:  Ontario health technology assessment series     Volume:  6     ISSN:  1915-7398     ISO Abbreviation:  Ont Health Technol Assess Ser     Publication Date:  2006  
Date Detail:
Created Date:  2012-10-17     Completed Date:  2012-10-18     Revised Date:  2013-11-06    
Medline Journal Info:
Nlm Unique ID:  101521610     Medline TA:  Ont Health Technol Assess Ser     Country:  Canada    
Other Details:
Languages:  eng     Pagination:  1-101     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Ablation for atrial fibrillation: an evidence-based analysis.
Next Document:  Hydrophilic catheters: an evidence-based analysis.