Document Detail

Absence and Resolution of Fragmented QRS Predict Reversible Myocardial Ischemia With Higher Probability of ST Segment Resolution in Patients With ST Segment Elevation Myocardial Infarction.
Jump to Full Text
MedLine Citation:
PMID:  23170095     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
BACKGROUND AND OBJECTIVES: Fragmented QRS complexes (fQRS) are associated with increased morbidity and mortality. The causative relationship between fQRS and cardiac fibrosis has been shown, but whether the presence and the number of fQRS on admission of electrocardiogram (ECG) predicts ST segment resolution in patients undergoing primary percutaneous coronary intervention (p-PCI) has not been investigated until now.
SUBJECTS AND METHODS: This study included one hundred and eighty-four consecutive patients with ST elevation myocardial infarction (STEMI) who underwent p-PCI. The presence or absence of fQRS on pre and post-PCI ECG and their relation with myocardial infarction and reperfusion parameters were investigated.
RESULTS: Patients with fQRS on admission of ECG or newly developed fQRS after p-PCI had increased inflammatory markers, higher cardiac enzyme levels, increased pain to balloon time, prolonged QRS time, more extended coronary involvement and more frequent Q waves on ECG in comparison to patients with absence or resolved fQRS. The presence and higher number of fQRS on admission or post-PCI ECGs were significantly related with low percent of ST resolution and myocardial reperfusion parameters. The area under the receiver operating characteristics curve values for the presence and number of fQRS to detect Thrombolysis in Myocardial Infarction Blush Grade 0 and 1, were 0.682 and 0.703.
CONCLUSION: In our study, fQRS was significantly related to infarction and myocardial reperfusion parameters before and after p-PCI. Successful myocardial reperfusion by p-PCI caused the reduction in number of fQRS and QRS time with higher ST resolution. fQRS may be useful in identifying the patients at higher cardiac risk with increased ischemic jeopardized or infarcted myocardium, and persistent or newly developed fQRS may predict low percent of ST segment resolution in patients undergoing p-PCI.
Authors:
Mustafa Cetin; Sinan Altan Kocaman; Tuncay Kiris; Turan Erdogan; Aytun Canga; Murtaza Emre Durakoglugil; Yüksel Ciçek; Sitki Dogan; Omer Satiroglu
Related Documents :
24281755 - Palpitations in a 64-year-old man.
19166685 - Association of leukocyte and neutrophil counts with infarct size, left ventricular func...
23842615 - Use of plasma "reconstitution" during cardio pulmonary bypass for a heart transplant af...
24456675 - A model to determine the effect of collagen fiber alignment on heart function post myoc...
20812935 - The atria: from morphology to function.
1527155 - Hemodynamics of 21 and 23 mm medtronic hall valves by doppler echocardiography.
Publication Detail:
Type:  Journal Article     Date:  2012-10-31
Journal Detail:
Title:  Korean circulation journal     Volume:  42     ISSN:  1738-5555     ISO Abbreviation:  Korean Circ J     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-11-21     Completed Date:  2012-11-22     Revised Date:  2013-05-30    
Medline Journal Info:
Nlm Unique ID:  101247141     Medline TA:  Korean Circ J     Country:  Korea (South)    
Other Details:
Languages:  eng     Pagination:  674-83     Citation Subset:  -    
Affiliation:
Department of Cardiology, Rize Education and Research Hospital, Rize, Turkey.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Korean Circ J
Journal ID (iso-abbrev): Korean Circ J
Journal ID (publisher-id): KCJ
ISSN: 1738-5520
ISSN: 1738-5555
Publisher: The Korean Society of Cardiology
Article Information
Download PDF
Copyright © 2012 The Korean Society of Cardiology
open-access:
Received Day: 02 Month: 2 Year: 2012
Revision Received Day: 24 Month: 4 Year: 2012
Accepted Day: 15 Month: 5 Year: 2012
Print publication date: Month: 10 Year: 2012
Electronic publication date: Day: 31 Month: 10 Year: 2012
Volume: 42 Issue: 10
First Page: 674 Last Page: 683
PubMed Id: 23170095
ID: 3493804
DOI: 10.4070/kcj.2012.42.10.674

Absence and Resolution of Fragmented QRS Predict Reversible Myocardial Ischemia With Higher Probability of ST Segment Resolution in Patients With ST Segment Elevation Myocardial Infarction
Mustafa Cetin, MD1
Sinan Altan Kocaman, MD1
Tuncay Kiris, MD2
Turan Erdogan, MD3
Aytun Canga, MD1
Murtaza Emre Durakoglugil, MD3
Yüksel Çiçek, MD3
Sitki Dogan, MD1
Omer Satiroglu, MD3
1Department of Cardiology, Rize Education and Research Hospital, Rize, Turkey.
2Department of Cardiology, Ordu State Hospital, Ordu, Turkey.
3Department of Cardiology, Rize University, Faculty of Medicine, Rize, Turkey.
Correspondence: Correspondence: Sinan Altan Kocaman, MD, Department of Cardiology, Rize Education and Research Hospital, 53020, Rize, Turkey. Tel: 90 (464) 217 03 64, Fax: 90 (464) 213 04 91, sinanaltan@gmail.com

Introduction

Fragmented QRS complexes (fQRS) are frequently seen on the surface electrocardiograms (ECGs) with a narrow or wide QRS complex, which includes paced rhythm, bundle branch block or ventricular premature beats.1) These fragmentations on surface ECG were associated with increased adverse cardiovascular events (CVEs) in previous studies.2-5) fQRS may be important to determine people at high risk for CVEs on admission and after ST elevation myocardial infarction (STEMI).

Fragmented QRS complexes on a 12-lead resting ECG are defined as various RSR' patterns (≥1 R' or notching of S wave or R wave) with or without Q waves lacking a typical bundle-branch block in 2 contiguous leads corresponding to a major coronary artery territory.6) Based on their duration, they are sub-classified into two subgroups as fQRS complexes with QRS duration <120 ms or ≥120 ms (fragmented wide-QRS complexes, f-wQRS) and they can also be found on an ECG with different QRS morphologies. Sometimes, fQRS might be the only ECG marker of myocardial damage in patients with non-Q myocardial infarction and in patients with a resolved Q wave.

The reason for the documented association between fQRS and increased morbidity and mortality, sudden cardiac death, and recurrent adverse cardiac events were investigated by previous studies.4), 5), 7-10) In these studies, the main causative mechanism regarding fQRS was cardiac fibrosis.11), 12) Otherwise, fQRS may represent the altered ventricular depolarization, which can be derived from different mechanisms such as the non-homogeneous activation of ischemic ventricles in the STEMI. The causative relationship between fQRS and cardiac fibrosis has been shown, but the possible relation of fQRS on admission and after percutaneous coronary intervention (PCI) with myocardial infarction, reperfusion, and parameters has not been studied until now.

In this study, we investigated whether the presence of fragmented QRS on admission ECG predicts the ST segment resolution in patients undergoing primary PCI (p-PCI) in patients with STEMI.


Subjects and Methods
Patient population and study protocol

The current study includes a prospective observational design. The study was conducted in the cardiology clinics at Rize Education and Research Hospital in Rize, Turkey and Ordu State Hospital in Ordu, Turkey. One hundred eighty four patients with STEMI and no history of coronary artery disease (CAD), who underwent primary PCI at two institutions between January 2010 and December 2010, were enrolled consecutively. An experienced cardiologist examined all patients immediately after hospitalization.

Clinical characteristics, which consisted of multiple descriptors from each patient's history and physical examination, were collected by physicians from cardiology clinics for each patient and were stored in the database of a coronary angiography laboratory at each institute. We recorded the baseline characteristics, which include hypertension, diabetes mellitus, smoking history, family history for CAD, and lipid parameters. Hypertension was defined as the active use of antihypertensive drugs or the documentation of blood pressure greater than 140/90 mm Hg. Diabetes mellitus was defined as fasting glucose levels over 126 m/dL or glucose level over 200 mg/dL at any measurement or active use of antidiabetic drugs or insulin. Patients who were using tobacco products on admission to our hospital, and those who had quit smoking within the last year were considered as smokers. The family history for CAD was defined as a history of documentation regarding CAD or sudden death in a first-degree relative before the age of 55 for men and 65 for women.

Killip score, which is a system used in individuals with an acute myocardial infarction in order to stratify risk was used to classify patients.13)

Patients with significant organic valvular heart disease and bundle branch block (LBBB, incomplete or complete RBBB or duration QRS >20 msn), known history of CAD, and those with permanent pacemakers were excluded from the study. Informed consent was obtained from all patients prior to the study. The study was performed in accordance with the principles stated in the Declaration of Helsinki and approved by the Local Ethics Committee.

Presence or absence of fQRS on pre and post-PCI ECGs and their relation with myocardial infarction and perfusion parameters were investigated. In addition, logistic regression analysis was used in order to determine independent predictors for presence of fQRS on pre and post-PCI ECGs.

Laboratory measurements

Cardiac biomarker levels including creatine kinase (CK), creatine kinase-MB fraction (CK-MB) and Troponin-I and inflammatory markers including leukocytes and other baseline parameters were measured at our emergency department and used in the analyses as admission values. The lipid samples were drawn by venipuncture in order to perform routine blood chemistry after fasting for at least 8 hours. Plasma blood glucose, total cholesterol, high density lipoprotein-cholesterol, low density lipoprotein-cholesterol, and triglyceride levels and other parameters were recorded to our hospital database. Glucose, creatinine, and lipid profile were determined by standard methods. White blood cell (leukocyte) counts were obtained from an automated cell counter (Coulter Gen-S, COULTER Corp, Miami, FL, USA).

Electrocardiogram

A 12-derivations surface ECG was obtained from all patients in the supine position immediately after their admission to the emergency care unit (ECU). The 12-lead ECG (Nihon Kohden-cardiofax S ECG-1250 K, filter range 0.5 Hz to 150 Hz, alternating current (AC) filter 60 Hz, 25 mm/s, 10 mm/mV) was analyzed by two independent clinicians who were blinded to study design and data.

The fQRS was defined as the presence of various RSR' patterns (QRS duration <120 ms) with or without a Q wave, which included an additional R wave (R' prime), notching of the R wave or S wave, or the presence of more than one R prime (fragmentation) without a typical bundle branch block in two contiguous leads corresponding to a major lead set for major coronary artery territory (Fig. 1). Any QRS morphology with a QRS duration >120 ms, including bundle branch block or intra-ventricular conduction delay were excluded from the current study. Analysis of the standard 12-lead ECG was performed without using any magnification, and fragmentations were considered to be present if a visually identifiable signal was demonstrated in all complexes of a particular lead. Thus, for statistical analysis, fQRS was defined to be present if found in ≥2 contiguous anterior leads, lateral leads, or inferior leads. The QRS duration was determined by the longest QRS in any lead.6) There was a 99% concordance for ECG interpretation for the presence of fQRS, non-fQRS, and wide QRS. In case of a disagreement, the final diagnosis was achieved by mutual agreement. We also used the concept of "number of fQRS", which represents the number of fQRS because "one fQRS complex" on its own was not accepted to be representative of the presence of fQRS.

The diagnosis of acute STEMI was made according to an ECG obtained during admission to ECU in the presence of clinical symptoms and findings. Patients with chest pain that continued for longer than 30 minutes and with the presence of new or presumed new ST-segment elevation at the J point in ≥2 contiguous leads of ≥0.2 mV in leads V1, V2, or V3 and ≥0.1 mV in other leads. Marked ST depression, which was maximal in leads V1 through V3, without ST segment elevation in other leads, was designated as posterior wall myocardial infarction (MI).14) The diagnosis of acute STEMI was also confirmed by demonstrating the responsible lesion on the coronary angiographies of all patients. Infarctions leading to the presence of ST elevation in V 1-5 derivations, the presence of ST elevations in two contiguous leads of I, aVL and V6 derivations, and the presence of ST elevation in two contiguous leads of II, III, aVF derivations were diagnosed as anterior MI, lateral MI and inferior MI, respectively.15)

Pathologic Q wave: Any Q wave in lead V2 or V3 ≥0.02 seconds or the QS complex in leads V2 and V3 with a Q wave ≥0.03 seconds and ≥0.1 mV deep or QS complex in lead I, II, aVL, aVF, or V4 to V6 in any 2 leads of a contiguous lead grouping (I, aVL, and V6; V4 to V6; and II, III, and aVF) was considered as pathologic. An R wave ≥0.04 seconds in lead V1 or V2 and an R/S ratio ≥1 with a concordant positive T wave in the absence of a conduction defect.14)

Jeopardized myocardium was determined by the sum of ST elevations (in mm) on each ST elevated derivation on pre and post PCI ECG (Total ST elevation score). A repeat ECG was obtained at 60-minute after p-PCI (Fig. 2). Percent of total ST resolution was calculated by the following formula: (Sum of ST elevations on Pre-PCI ECG)-(Sum of ST elevations on Post-PCI ECG)/(Sum of ST elevations on Pre-PCI ECG)×100. Delta QRS time was calculated by the following formula: (Pre-PCI QRS duration)-(Post-PCI QRS duration).

Coronary angiography and primary percutaneous coronary intervention

All patients were administered 300 mg aspirin and 600 mg clopidogrel loading dose prior to the procedure. At the start of the procedure, 10.000 U IV heparin was administered. Coronary stenting directly, or followed by balloon angioplasty, was performed where necessary. Diameters of the vessel and stent, if performed, the dilatation procedure was recorded during PCI. Glycoprotein IIb-IIIa inhibitor (tirofiban) was administered at the consideration of the operator. After the operation, all patients were monitored in the intensive coronary unit until stabilization was achieved. All patients were treated based on the recommendations of American College of Cardiology/American Heart Association Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction.16)

Selective coronary angiography was performed urgently at the hemodynamic laboratory using the Standard Judkins technique through the femoral artery. Multiple views were obtained in all patients, with visualization of the left anterior descending and left circumflex coronary in at least 4 views, and the right coronary artery in at least 2 views. Coronary angiograms were recorded on compact discs in DICOM format. Atherosclerotic coronary involvement was assessed by the number of vessels involved (vessel score) and by a severity score. Significant stenosis was determined visually and defined as a ≥50% reduction in lumen diameter in any view compared with the nearest normal segment. Vessel score ranged from 0 to 3, depending on the vessels involved (0: <50% luminal narrowing, 1, 2 and 3: number of luminal narrowed vessels of ≥50%). Coronary atherosclerotic burden was assessed using the Gensini score.17)

The Gensini score, which considers both the extent and the severity of the lesions at coronary angiography, was calculated for each patient. This scoring system grades the stenosis in the epicardial coronary arteries (1 for 1-25% stenosis, 2 for 26-50% stenosis, 4 for 51-75% stenosis, 8 for 76-90% stenosis, 16 for 91-99% stenosis, and 32 for total occlusion) and multiplies this number by a constant number determined according to the anatomical position of the lesion.

The Thrombolysis in Myocardial Infarction (TIMI) Grade Flow, which is a widely adopted scoring system, grades 0-3 referring to the levels of coronary blood flow assessed during percutaneous coronary angioplasty18) was used to score coronary flow as previously defined. The TIMI Myocardial Blush grade score19) was used in order to evaluate the microvascular perfusion and was scored as previously defined.

Statistical analysis

Continuous variables were given as mean±standard deviation; categorical variables were defined as percentages. Continuous variables were compared by Student t-test and the χ2 test was used for the categorical variables between two groups. Linear regression analysis with the stepwise method were used for the multivariate analysis of independent variables, which were included if they were significantly different in the univariate analyses. All tests with regards to significance were two-tailed. Statistical significance was defined as p<0.05.

The Statistical Package for the Social Sciences (SPSS) statistical software (SPSS 15.0 for Windows, Inc., Chicago, IL, USA) was used for all statistical calculations.


Results

Baseline clinical characteristics were shown in Table 1. Patients with persistent or newly developed fQRS had higher leukocyte counts (p=0.004, especially neutrophils, p<0.001), higher CK-MB levels (p=0.030), increased pain to balloon time (p=0.046), higher Killip score (p=0.016), more prolonged QRS time (p=0.025), and more extended coronary involvement (p<0.001) in comparison to patients with absence or resolution of fQRS. Additionally, these patients usually exhibited an infarction on the anterior territory and was often related to a lesion in the proximal left anterior descending artery and the larger jeopardized myocardium (p<0.001).

In Table 2, the study parameters were presented in the groups by determined the presence or absence of fQRS on pre-PCI and post-PCI ECGs.

On the other hand, the presence and higher number of fQRS on admission or post-PCI ECGs were significantly related with the low percent of ST resolution and myocardial reperfusion parameters (Table 3). The presence of fQRS on admission of the ECG, but not on the post-PCI ECG, was significantly related to the post-PCI TIMI myocardial reperfusion grade. The relationships between fQRS and reperfusion parameters were presented in Table 4. In the multivariate analysis, only the Gensini score (p=0.027), delta QRS time (p=0.001) and persistent or newly developed fQRS (p=0.035) predicted the percent of total ST resolution (Table 5).

The area under the receiver operating characteristics curve values for the presence and number of fQRS to detect TIMI Blush Grade 0 and 1, were 0.682 and 0.703 (Fig. 3).


Discussion

In this study, we aimed to evaluate the relationship between the presence of fQRS on admission as well as post-PCI ECGs and myocardial reperfusion parameters in patients with STEMI. We found that fQRS was related with inflammatory state, prolonged QRS time, the extent of infarction, and jeopardized myocardium and myocardial perfusion before and after primary PCI. Moreover, although fQRS might be less valuable in STEMI, compared to acute coronary syndrome whose ECG changes are more nonspecific; the absence and resolution of fragmented QRS and QRS narrowing on ECG showed the diagnostic value as a useful marker of successful myocardial reperfusion, similar to the percent of total ST resolution.

Although fQRS is defined as unexpected deviations in the QRS morphology, the exact cause of QRS complex fractionations on surface ECG is not yet completely known. fQRS predicts cardiac events in different populations. Pathophysiologically, fQRS is generally due to regional myocardial fibrosis/scar and data suggests that ischemia might cause fQRS via nonhomogeneous myocardial electrical activation.20-24) In patients with ischemic or non-ischemic left ventricular dysfunction, fQRS correlated with myocardial fibrosis.25) In previous studies in which Gadolinium delayed the enhancement on cardiac magnetic resonance imaging and was used to determine myocardial structure, fQRS has shown a relation with extensive myocardial scar.11), 12) fQRS was also found to be a marker of a prior MI, defined by regional perfusion abnormalities, which has a substantially higher sensitivity and negative predictive value compared with the Q wave.6), 26) It has been shown that regional fQRS patterns denote the presence of a greater corresponding focal regional myocardial scar on stress myocardial perfusion imaging.27) Additionally, it was known that chronic ischemia could cause myocardial patchy fibrosis without prior MI.28)

Today, it is well known that myocardial ischemia could cause heart failure and ventricular arrhythmias due to the development of scar tissue, which is related with increased mortality and morbidity.6), 20), 27), 29) In the setting of acute coronary syndrome, non-homogenous depolarization of myocardium caused by ischemia and infarction may be the main determinant for increased arrhythmic events in hospital course. In our study, the extent of infarcted myocardium on admission was assessed by cardiac biomarkers and, fQRS was found to be related to the extent of infarcted myocardium at admission. Especially, this relation was significant for CK and CK-MB, but not for Troponin I for admission values. Possibly, this may be related to the late increase in Troponin levels in the setting for STEMI. Similarly, we also found that fQRS was related with the extent and severity of CAD. This is possibly derived from the extent of jeopardized ischemic myocardium, which may also cause the non-homogenous conduction on the myocardium.2), 23)

In patients with acute coronary syndrome, prolonged QRS time was associated with increased long term mortality due to increased heart failure, arrhythmia and ischemia.30) In our study, prolonged QRS time was related to fQRS even relatively in the normal range of QRS (<120 ms). This relation may have two possible explanations. Either fragmentation on the QRS complex is induced by the prolongation in QRS time or the fragmentation on the QRS causes an increase in the duration of the QRS complex. However, by our study design, we can only speculate which one is the cause and which one is the result or response in regards to the fragmentation. This interaction should be examined in order to clarify the cause-result relationship in an electrophysiological based study.

Although the presence of fQRS on admission was significantly related with the post-PCI TIMI myocardial perfusion grade, the presence of post-PCI fQRS was not related to myocardial perfusion grade significantly. In our opinion, myocardial stunning and hibernation concepts may explain this gap. At the cellular level, electrical homogeneity can slowly be restored in these situations despite sufficient myocardial reperfusion. In our study, this explanation may also be supported by additional findings. The patients with sufficient perfusion provided by p-PCI had fQRS at a rate of 45% even after PCI. We can speculate that in some patients, the fragmentations were related to the presence of stunned myocardium, which can resolve in the course and in others cannot due to the presence of myocardial scar.

Twelve-lead surface ECG, which is a cheap, non-invasive, and easily apprehensible method, is presently a gold standard in differential diagnosis, determining treatment methods, and performing risk stratification of STEMI. ST elevation, Q wave, and several repolarization abnormalities are commonly used in diagnosis of MI. Additionally, fQRS may also be of great value in predicting the cardiac status as well as short and long term prognosis. fQRS may be useful in identifying patients at higher cardiac risk with ischemic jeopardized or infarcted myocardium, and it can also provide information about the presence of enhanced heterogeneity of myocardial conduction and cardiac electrical instability in an individual patient. fQRS, which may be derived from the effects of individual risk, myocardial infarction and perfusion related factors on myocardial electricity at the cellular level, can represent increased cardiac risk by different causative mechanisms in patients with STEMI.

In conclusion, fragmented QRS may predict a low percent of ST segment resolution and unsuccessful reperfusion in patients undergoing p-PCI. Moreover, the absence and resolution of fQRS may predict reversible myocardial ischemia with a high percent of ST segment resolution in patients with STEMI.


Notes

The authors have no financial conflicts of interest.

References
1. Das MK,Suradi H,Maskoun W,et al. Fragmented wide QRS on a 12-lead ECG: a sign of myocardial scar and poor prognosisCirc Arrhythm ElectrophysiolYear: 2008125826819808417
2. Das MK,Michael MA,Suradi H,et al. Usefulness of fragmented QRS on a 12-lead electrocardiogram in acute coronary syndrome for predicting mortalityAm J CardiolYear: 20091041631163719962466
3. Korhonen P,Husa T,Konttila T,et al. Fragmented QRS in prediction of cardiac deaths and heart failure hospitalizations after myocardial infarctionAnn Noninvasive ElectrocardiolYear: 20101513013720522053
4. Das MK,Saha C,El Masry H,et al. Fragmented QRS on a 12-lead ECG: a predictor of mortality and cardiac events in patients with coronary artery diseaseHeart RhythmYear: 200741385139217954396
5. Pietrasik G,Goldenberg I,Zdzienicka J,Moss AJ,Zareba W. Prognostic significance of fragmented QRS complex for predicting the risk of recurrent cardiac events in patients with Q-wave myocardial infarctionAm J CardiolYear: 200710058358617697810
6. Das MK,Khan B,Jacob S,Kumar A,Mahenthiran J. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery diseaseCirculationYear: 20061132495250116717150
7. Das MK,Zipes DP. Fragmented QRS: a predictor of mortality and sudden cardiac deathHeart RhythmYear: 200963 SupplS8S1419251229
8. Cheema A,Khalid A,Wimmer A,et al. Fragmented QRS and mortality risk in patients with left ventricular dysfunctionCirc Arrhythm ElectrophysiolYear: 2010333934420511537
9. Das MK,El Masry H. Fragmented QRS and other depolarization abnormalities as a predictor of mortality and sudden cardiac deathCurr Opin CardiolYear: 201025596419881337
10. Das MK,Maskoun W,Shen C,et al. Fragmented QRS on twelve-lead electrocardiogram predicts arrhythmic events in patients with ischemic and nonischemic cardiomyopathyHeart RhythmYear: 20107748020129288
11. Gardner PI,Ursell PC,Fenoglio JJ Jr,Wit AL. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarctsCirculationYear: 1985725966114017211
12. Chatterjee S,Changawala N. Fragmented QRS complex: a novel marker of cardiovascular diseaseClin CardiolYear: 201033687120186984
13. Killip T 3rd,Kimball JT. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patientsAm J CardiolYear: 1967204574646059183
14. Thygesen K,Alpert JS,White HD,et al. Universal definition of myocardial infarctionCirculationYear: 20071162634265317951284
15. Alpert JS,Thygesen K,Antman E,Bassand JP. Myocardial infarction redefined: a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarctionJ Am Coll CardiolYear: 20003695996910987628
16. Antman EM,Hand M,Armstrong PW,et al. 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 writing group to review new evidence and update the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction, writing on behalf of the 2004 writing committeeCirculationYear: 200811729632918071078
17. Gensini GG. A more meaningful scoring system for determining the severity of coronary heart diseaseAm J CardiolYear: 1983516066823874
18. The TIMI Study GroupThe thrombolysis in myocardial infarction (TIMI) trialN Engl J MedYear: 198531932936
19. Gibson CM,Cannon CP,Murphy SA,et al. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugsCirculationYear: 200010112513010637197
20. Flowers NC,Horan LG,Thomas JR,Tolleson WJ. The anatomic basis for high-frequency components in the electrocardiogramCirculationYear: 1969395315395778254
21. Lesh MD,Spear JF,Simson MB. A computer model of the electrogram: what causes fractionation?J ElectrocardiolYear: 198821SupplS69S733216179
22. Friedman PL,Fenoglio JJ,Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogsCirc ResYear: 1975361271441116215
23. Wiener I,Mindich B,Pitchon R. Fragmented endocardial electrical activity in patients with ventricular tachycardia: a new guide to surgical therapyAm Heart JYear: 198410786906691245
24. Basaran Y,Tigen K,Karaahmet T,et al. Fragmented QRS complexes are associated with cardiac fibrosis and significant intraventricular systolic dyssynchrony in nonischemic dilated cardiomyopathy patients with a narrow QRS intervalEchocardiographyYear: 201128626820618390
25. Calore C,Cacciavillani L,Boffa GM,et al. Contrast-enhanced cardiovascular magnetic resonance in primary and ischemic dilated cardiomyopathyJ Cardiovasc Med (Hagerstown)Year: 2007882182917885521
26. Reddy CV,Cheriparambill K,Saul B,et al. Fragmented left sided QRS in absence of bundle branch block: sign of left ventricular aneurysmAnn Noninvasive ElectrocardiolYear: 20061113213816630087
27. Mahenthiran J,Khan BR,Sawada SG,Das MK. Fragmented QRS complexes not typical of a bundle branch block: a marker of greater myocardial perfusion tomography abnormalities in coronary artery diseaseJ Nucl CardiolYear: 20071434735317556169
28. Weinberg SL,Reynolds RW,Rosenman RH,Katz LN. Electrocardiographic changes associated with patchy myocardial fibrosis in the absence of confluent myocardial infarction; an anatomic correlative studyAm Heart JYear: 19504074575914783068
29. Varriale P,Chryssos BE. The RSR' complex not related to right bundle branch block: diagnostic value as a sign of myocardial infarction scarAm Heart JYear: 19921233693761736572
30. Ari H,Cetinkaya S,Ari S,Koca V,Bozat T. The prognostic significance of a fragmented QRS complex after primary percutaneous coronary interventionHeart VesselsYear: 201227202821344317

Article Categories:
  • Original Article

Keywords: Fragmented QRS, Electrocardiography, Myocardial infarction, Reperfusion, Marker.

Previous Document:  Hypoadiponectinemia in patients with paroxysmal atrial fibrillation.
Next Document:  Transcatheter aortic valve implantation: early experience in Korea.