Document Detail


2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times.
MedLine Citation:
PMID:  25483607     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
PURPOSE: To present and assess a procedure for measurement of spinal cord total cross-sectional areas (TCA) and gray matter (GM) areas based on phase-sensitive inversion recovery imaging (PSIR). In vivo assessment of spinal cord GM and white matter (WM) could become pivotal to study various neurological diseases, but it is challenging because of insufficient GM/WM contrast provided by conventional magnetic resonance imaging (MRI).
MATERIALS AND METHODS: We acquired 2D PSIR images at 3T at each disc level of the spinal axis in 10 healthy subjects and measured TCA, cord diameters, WM and GM areas, and GM area/TCA ratios. Second, we investigated 32 healthy subjects at four selected levels (C2-C3, C3-C4, T8-T9, T9-T10, total acquisition time <8 min) and generated normative reference values of TCA and GM areas. We assessed test-retest, intra- and interoperator reliability of the acquisition strategy, and measurement steps.
RESULTS: The measurement procedure based on 2D PSIR imaging allowed TCA and GM area assessments along the entire spinal cord axis. The tests we performed revealed high test-retest/intraoperator reliability (mean coefficient of variation [COV] at C2-C3: TCA = 0.41%, GM area = 2.75%) and interoperator reliability of the measurements (mean COV on the 4 levels: TCA = 0.44%, GM area = 4.20%; mean intraclass correlation coefficient: TCA = 0.998, GM area = 0.906).
CONCLUSION: 2D PSIR allows reliable in vivo assessment of spinal cord TCA, GM, and WM areas in clinically feasible acquisition times. The area measurements presented here are in agreement with previous MRI and postmortem studies. J. Magn. Reson. Imaging 2014.
Authors:
Nico Papinutto; Regina Schlaeger; Valentina Panara; Eduardo Caverzasi; Sinyeob Ahn; Kevin J Johnson; Alyssa H Zhu; William A Stern; Gerhard Laub; Stephen L Hauser; Roland G Henry
Related Documents :
22563277 - Eosinophilic otitis media: ct and mri findings and literature review.
22521487 - Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging.
11702137 - Magnetic resonance imaging of articular cartilage.
2122677 - Mr imaging of fractures of the growth plate.
18443387 - Experimental detection of iron overload in liver through neutron stimulated emission sp...
3567467 - Evaluation of pulmonary parenchymal disease by magnetic resonance imaging.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-12-8
Journal Detail:
Title:  Journal of magnetic resonance imaging : JMRI     Volume:  -     ISSN:  1522-2586     ISO Abbreviation:  J Magn Reson Imaging     Publication Date:  2014 Dec 
Date Detail:
Created Date:  2014-12-8     Completed Date:  -     Revised Date:  2014-12-9    
Medline Journal Info:
Nlm Unique ID:  9105850     Medline TA:  J Magn Reson Imaging     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
© 2014 Wiley Periodicals, Inc.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Replacement of Water Molecules in a Phosphate Binding Site by Furanoside-Appended lin-Benzoguanine L...
Next Document:  Expression, identification and biological effects of the novel recombination protein, PACAP38-NtA, w...