Document Detail


250 DPI at 1000 Hz acquisition rate S(0) lamb wave digitizing pen.
MedLine Citation:
PMID:  23357912     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
This paper presents an active stylus (X, Y) flat digitizing tablet (AST). The tablet features an acquisition rate of 1000 pts/s with 0.1 mm resolution. The cordless stylus incorporates a 1-mA low-power pulse generator. Precision is limited by diffraction to about ±0.3 mm on a 57 x 57 mm region of a 71 x 71 x 1 mm digitizing plate. Selective generation and detection of the S(0) Lamb mode with a precessing tip is the key feature of this tablet. We first highlight the ultrasonic propagation inside the stylus tip and stability of Lamb wave generation when the stylus is inclined, rotated, and slid. Then, modeling of the limitations imposed by diffraction of a 1-MHz burst S(0) plane Lamb wave packet is carried out. The model takes into account high-order zero crossing detection as well as reflections and shear horizontal (SH) conversions of the S(0) Lamb mode at free edges of a glass plate. Reflection and transmission through an isotropic PZT bar are also calculated. Finally, localization precision by time difference of arrival (TDOA) is calculated and experimentally verified near the borders of the plate, taking into account the angular sensitivity of the precessing tip.
Authors:
Jean-Pierre Nikolovski; Danièle Fournier
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  IEEE transactions on ultrasonics, ferroelectrics, and frequency control     Volume:  60     ISSN:  1525-8955     ISO Abbreviation:  IEEE Trans Ultrason Ferroelectr Freq Control     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-01-29     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9882735     Medline TA:  IEEE Trans Ultrason Ferroelectr Freq Control     Country:  United States    
Other Details:
Languages:  eng     Pagination:  380-94     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Development of a thick film PZT foil sensor for use in structural health monitoring applications.
Next Document:  A multiple-scale perturbation approach to mode coupling in periodic plates.