Search Results
Results 251 - 300 of 1679
< 1 2 3 4 5 6 7 8 9 10 11 >
Varma Sarvesh - - 2010
This paper presents a novel method for cell positioning on a substrate which combines the optical quality of glass and the cell-repelling property of fluoropolymers. The process employs plasma lithography, which utilizes the high-resolution patterning of photolithography along with the versatility of the plasma polymerization. When mammalian cells were grown ...
Fujiwara Takahiro - - 2010
Octaarginine (R8)-modified liposomes have been used to deliver therapeutic substances into cells owing to the efficient cellular uptake via macropinocytosis. Recent analyses revealed that R8-modified liposomes are mainly taken up via macropinocytosis, and escape from endosomes efficiently to avoid lysosomal degradation in non-polarized NIH-3T3 cells. In the present study, we ...
Coman Vasile - - 2009
The present study explores genetic engineering of the respiratory chain and the application of two different flexible osmium redox polymers to achieve efficient electric communication between the gram-positive organism Bacillus subtilis and an electrode. Poly(1-vinylimidazole)(12)-[Os-(4,4'-dimethyl-2,2'-bipyridyl)(2)Cl(2)](+/2+) (osmium redox polymer I) and poly(vinylpyridine)-[Os-(N,N'-methylated-2,2'-biimidazole)(3)](2+/3+) (osmium redox polymer II) were investigated for efficient electrical ...
Raffa Vittoria - - 2010
The use of controlled electric fields to facilitate cell permeabilisation for enhanced cellular uptake of molecules is well established. The main limitation to the application of this technology in clinical practice is the requirements of high voltages which cause significant cell death in the target tissue. This paper presents a ...
Meng Fanben - - 2009
A strategy to assemble cells on a solid support surface, here the surface of a gold electrode, is developed by transfecting cells with thiolated DNA molecules which have been immobilized on the gold electrode surface in advance. This strategy to assemble cells can present a general and convenient method for ...
Valley J K - - 2009
Optoelectronic tweezers (OET) is a promising approach for the parallel manipulation of single cells for a variety of biological applications. By combining the manipulation capabilities of OET with other relevant biological techniques (such as cell lysis and electroporation), one can realize a true parallel, single-cell diagnostic and stimulation tool. Here, ...
Sarvestani Amir Sabet - - 2010
In order to evaluate the influence of static magnetic fields (SMF) on the progression of cell cycle as a monitor of presumptive genotoxicity of these fields, the effects of a 15 mT SMF on cell cycle progression in rat bone marrow stem cells (BMSC) were examined. The cells were divided ...
Wang Ji-Wei - - 2010
Measurements on single cells provide more accurate and in-depth information about electrical properties than those on pathological tissues. The relationship between electrode geometry and the location of a cell on microfluidic devices greatly affects the accuracy of single-cell impedance measurement. Accordingly, this study presents numerical solutions from the FEM simulation ...
Hambourger Michael - - 2009
A photoelectrochemical biofuel cell has been developed which incorporates aspects of both an enzymatic biofuel cell and a dye-sensitized solar cell. Photon absorption at a porphyrin-sensitized n-type semiconductor electrode gives rise to a charge-separated state. Electrons and holes are shuttled to appropriate cathodic and anodic catalysts, respectively, allowing the production ...
Kirschbaum Michael - - 2009
In order to elucidate the dynamics of cellular processes that are induced in context with intercellular communication, defined events along the signal transduction cascade and subsequent activation steps have to be analyzed on the level of individual cells and correlated with each other. Here we present an approach that allows ...
Ferrier Graham A - - 2009
In biomedical applications ranging from the study of pathogen invasion to drug efficacy assays, there is a growing need to develop minimally invasive techniques for single-cell analysis. This has inspired researchers to develop optical, electrical, microelectromechanical and microfluidic devices for exploring phenomena at the single-cell level. In this work, we ...
Agarwal Aparna - - 2009
Single-cell electroporation using an electrolyte-filled capillary is an emerging technique for transient pore formation in adherent cells. Because adherent cells do not have a simple and consistent shape and because the electric field emanating from the tip of the capillary is inhomogeneous, the Schwan equation based on spherical cells in ...
Gao Yuanfang - - 2009
Neurons and endocrine cells secrete neurotransmitter and hormones in discrete packets in a process called quantal exocytosis. Electrochemical microelectrodes can detect spikes in current resulting from the oxidation of individual quanta of transmitter only if the electrodes are small and directly adjacent to release sites on the cell. Here we ...
Okochi Mina - - 2009
A three-dimensional (3D) cell culture system has been fabricated using a magnetic force based cell patterning method, demonstrating a facile approach for the analysis of invasive capacity of BALB/3T3/v-src using an magnetic force and magnetite nanoparticles. The 3D cell patterning was performed using an external magnetic force and a pin ...
Dittami Gregory M - - 2010
A microchip was applied to electrically depolarize rat pheochromocytoma (PC12) cells and to simultaneously detect exocytotic catecholamine release amperometrically. Results demonstrate exocytosis elicited by flowing cells through an electric field generated by a potentiostat circuit in a microchannel, as well as exocytosis triggered by application of an extracellular voltage pulse ...
Vieira G G Department of Physics, The Ohio State University, Columbus, Ohio 43210, - - 2009
We present a multiplex method, based on microscopic programmable magnetic traps in zigzag wires patterned on a platform, to simultaneously apply directed forces on multiple fluid-borne cells or biologically inert magnetic microparticles or nanoparticles. The gentle tunable forces do not produce damage and retain cell viability. The technique is demonstrated ...
Chebbi Imène - - 2010
Bisphosphonates have been used for decades in the standard therapy of bone-related diseases, including bone metastasis of various malignancies, and they might as well be toxic on early cancer cells themselves. In order to allow a better delivery of neridronate (a N-containing bisphosphonate with relatively poor activity), liposomes were evaluated ...
Zhao Yi - - 2009
1-D magnetic nanowires provide a powerful tool for investigating biological systems because such nanomaterials possess unique magnetic properties, which allow effective manipulation of cellular and subcellular objects. In this study, we report the rotational maneuver of ferromagnetic nanowires and their applications in cell manipulation. The rotational maneuver is studied under ...
Frewin C L - - 2009
Brain machine interface (BMI) devices offer a platform that can be used to assist people with extreme disabilities, such as amyotrophic lateral sclerosis (ALS) and Parkinson's disease. Silicon (Si) has been the material of choice used for the manufacture of BMI devices due to its mechanical strength, its electrical properties ...
Ito Akira - - 2009
In tissue engineering, coculture systems have been employed for two major purposes: (1) construction of tissue and organ substitutes (e.g., coculture of parenchymal and nonparenchymal cells in liver tissue engineering) and (2) maintenance of cellular functions (e.g., coculture of embryonic stem cells with embryonic fibroblasts as the feeder cells). For ...
Yuan Yu - - 2009
We report the design and experimental measurement of a powered active magnetic metamaterial with tunable permeability. The unit cell is based on the combination of an embedded radiofrequency amplifier and a tunable phase shifter, which together control the response of the medium. The measurements show that a negative permeability metamaterial ...
Ekmekci Evren - - 2009
This paper presents the results of a feasibility study for the design of multi-band tunable metamaterials based on the use of micro-split SRR (MSSRR) structures. In this study, we have designed and constructed a conventional split-ring resonator (SRR) unit cell (type A) and two modified SRR unit cells having the ...
Suzuki Toshio - - 2009
We report a correlation between the microstructure of the anode electrode of a solid oxide fuel cell (SOFC) and its electrochemical performance for a tubular design. It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to ...
Ito Hiroshi - - 2010
Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting ...
Okochi Mina - - 2010
A droplet-based cell lysis and reverse transcription-polymerase chain reaction (PCR) were performed on-chip employing magnetic force-based-droplet-handling system. The actuation with a magnet offers a simple system for droplet manipulation; it does not need mechanical fluidic systems such as pumps and valves for handling solutions. It can be used as a ...
Kim Mihye - - 2009
The goal of the present communication was to develop a strategy for detachment of cells and biomaterial constructs from indium tin oxide (ITO) electrodes.
Sakaki Kelly - - 2009
Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using ...
Akiyama Hirokazu - - 2009
We describe the fabrication of three-dimensional tissue constructs using a magnetic force-based tissue engineering technique, in which cellular organization is controlled by magnetic force. Target cells were labeled with magnetite cationic liposomes (MCLs) so that the MCL-labeled cells could be manipulated by applying a magnetic field. Line patterning of human ...
Clow Andrew - - 2009
Automated lab on chip systems offer increased throughput and reproducibility, but the implementation of microelectrodes presently relies on miniaturization of parallel plate electrodes that are time consuming and costly to fabricate. Electric field modelling of open electrofusion chambers suggested that widely spaced (> or =2 mm) coplanar film electrodes should ...
Cha Jaehwan - - 2010
The application of microbial fuel cell (MFC) for wastewater treatment is a promising strategy for the simultaneous treatment of pollutants and generation of electricity. However, for practical application, there are several limitations to the MFC that involve biological and engineering aspects. In this study, a single-chambered MFC able to submerge ...
Wan Alwin M D - - 2009
We describe a conducting polymer device that can induce electrically controlled density gradients of normal and cancerous cell lines, and hence can be used as a tool for the study of cell-cell interactions.
Lentacker Ine - - 2010
Drug delivery with microbubbles and ultrasound is gaining more and more attention in the drug delivery field due to its noninvasiveness, local applicability, and proven safety in ultrasonic imaging techniques. In this article, we tried to improve the cytotoxicity of doxorubicin (DOX)-containing liposomes by preparing DOX-liposome-containing microbubbles for drug delivery ...
Nawalany Kinga - - 2009
Two photosensitizing systems: (1) tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) encapsulated in sterically stabilized liposomes (SSL) and (2) p-THPP functionalized by covalent attachment of poly(ethylene glycol) (p-THPP-PEG(2000)) were studied in vitro. The dark and photo cytotoxicity of these systems were evaluated on two cell lines: HCT 116, a human colorectal carcinoma cell line, and ...
Lee Sang-Min - - 2009
Modularly clickable polymer-caged nanobins (PCNs) were prepared from liposome templates using a drop-in cholesterol-modified poly(acrylic acid) reagent followed by cross-linking with alkyne-functionalized diamine linker that allows for the conjugation of azide-modified targeting ligands via click ligation. These PCNs possess pH-responsive characteristics that can be used to trigger the release of ...
Curtis Theresa M - - 2009
A number of toxicity sensors for testing field water using a range of eukaryotic cell types have been proposed, but it has been difficult to identify sensors with both appropriate sensitivity to toxicants and the potential for long-term viability. Assessment of bovine pulmonary artery endothelial cell (BPAEC) monolayer electrical impedance ...
Papis Elena - - 2009
Magnetic nanoparticles (NPs) have great potential for applications not only as catalysts or energy storage devices, but also in biomedicine, as contrast enhancement agents for magnetic resonance imaging, or for drug delivery. The same characteristics that make cobalt-based NPs so attractive raise serious questions about their safety. In this context, ...
Park Kidong - - 2009
Particle manipulation based on dielectrophoresis (DEP) can be a versatile and useful tool in lab-on-chip systems for a wide range of cell patterning and tissue engineering applications. Even though there are extensive reports on the use of DEP for cell patterning applications, the development of approaches that make DEP even ...
Bothun Geoffrey D - - 2009
Cationic multifluorescent quantum dot liposomes (QD-Ls) have been prepared with both hydrophobic and hydrophilic CdSe/ZnS quantum dots by reverse phase evaporation. QD incorporation was confirmed by fluorescence and confocal microscopy. Incorporation did not affect QD photoactivity or damage bilayer or liposome structure. Cell uptake was examined in human hepatocellular carcinoma ...
Loichen Juliane - - 2009
A new method to affect cells by cell-surface interaction is introduced. Biocompatible magnetic nanobeads are deposited onto a biocompatible magnetic thin layer. The particles are composed of small magnetite crystals embedded in a matrix which can be functionalized by different molecules, proteins or growth factors. The magnetic interaction between surface ...
Taetz Sebastian - - 2009
Cationic hyaluronic acid (HA)-modified DOTAP/DOPE liposomes were designed for the targeted delivery of anti-telomerase siRNA to CD44 receptor-expressing lung cancer cells. DOTAP/DOPE liposomes modified with 1%-20% (w/w) HA-DOPE conjugate were obtained by the ethanol injection method. Their size was below 170 nm and they exhibited zeta potentials higher than +50 ...
Biani Natalia B - - 2009
Cleaning symbioses represent classic models of mutualism, and some bee mites are thought to perform cleaning services for their hosts in exchange for suitable environments for reproduction and dispersal. These mutual benefits, however, have not been rigorously demonstrated. We tested the sanitary role of bee mites by correlating mite loads ...
Jen Chun-Ping - - 2009
The manipulation of biological cells is essential to many biomedical applications. Insulator-based dielectrophoresis (iDEP) trapping consists of insulating structures which squeeze the electric field in a conductive solution to create a non-uniform electric field. The iDEP trapping microchip with the open-top microstructures was designed and fabricated in this work. For ...
Chen Peter - - 2009
Solid-state dye-sensitized solar cells were fabricated using an organic dye, 2-cyanoacrylic acid-4-(bis-dimethylfluoreneaniline)dithiophene (JK2), which exhibits more than 1 V open-circuit potential (V(oc)). To scrutinize the origin of high voltage in these cells, transient V(oc) decay measurements and density functional theroy calculations of the interacting dye/semiconductor surface were performed. A negative ...
Graham Anthony H D - - 2009
The use of CMOS (Complementary Metal Oxide Semiconductor) integrated circuits to create electrodes for biosensors, implants and drug-discovery has several potential advantages over passive multi-electrode arrays (MEAs). However, unmodified aluminium CMOS electrodes may corrode in a physiological environment. We have investigated a low-cost electrode design based on the modification of ...
Huang Ching-Wen - - 2009
We report a microfluidic cell culture chip that was used for long-term electrotaxis study on a microscope. The cellular response under three different electric field strengths was studied in a single channel microfluidic chip. Electric field (EF) inside the microchamber was numerically simulated and compared to the measured value. Lung ...
Sîrbulescu Ruxandra F - - 2009
In contrast to mammals, teleost fish exhibit an enormous potential to regenerate adult spinal cord tissue after injury. However, the mechanisms mediating this ability are largely unknown. Here, we analyzed the major processes underlying structural and functional regeneration after amputation of the caudal portion of the spinal cord in Apteronotus ...
Curtis Theresa M - - 2009
A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored ...
Kaneda Makoto - - 2009
Liposomes are widely utilized in molecular biology and medicine as drug carriers. Here we report a new liposome-cell interaction through connexins. Connexin 43 (Cx43)-containing liposomes were prepared by using cell-free transcription/translation systems with plasmids encoding Cx43 in the presence of liposome. The expressed membrane protein, Cx43, was directly constituted to ...
Shafiee Hadi - - 2009
Dielectrophoresis (DEP) has become a promising technique to separate and identify cells and microparticles suspended in a medium based on their size or electrical properties. Presented herein is a new technique to provide the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid. ...
Chuang Cheng-Hsin - - 2009
Electrorotation (ER) has become a very powerful diagnostic technique for the measurement of dielectric properties of cells. However, only a few papers have investigated the electric-induced rotation of particles in a stationary alternating (AC) electric field instead of a rotating electric field. In this study, a microchip composed of a ...
< 1 2 3 4 5 6 7 8 9 10 11 >