Preventing falls among older adults: no "one size suits all" intervention strategy.
Article Type: Report
Subject: Falls (Accidents) (Risk factors)
Falls (Accidents) (Prevention)
Aged (Physiological aspects)
Aged (Research)
Exercise (Health aspects)
Exercise for the aged (Physiological aspects)
Exercise for the aged (Research)
Author: Rose, Debra J.
Pub Date: 10/01/2008
Publication: Name: Journal of Rehabilitation Research & Development Publisher: Department of Veterans Affairs Audience: Academic Format: Magazine/Journal Subject: Health Copyright: COPYRIGHT 2008 Department of Veterans Affairs ISSN: 0748-7711
Issue: Date: Oct, 2008 Source Volume: 45 Source Issue: 8
Topic: Event Code: 310 Science & research
Geographic: Geographic Scope: United States Geographic Code: 1USA United States
Accession Number: 204987791
Full Text: INTRODUCTION

According to the Centers for Disease Control and Prevention, the United States is on the "brink of a longevity revolution" [1]. By 2030, an estimated one in every five Americans will be 65 years or older. Mortality rates are also expected to improve, with global life expectancy reaching 76 years by 2050. As a direct consequence of this disproportionate growth in the older adult segment of the population, a 25 percent increase in healthcare spending over this same period is anticipated unless the health of older adults can be maintained or improved substantially [2]. Falls among older adults are particularly costly for the individual and society. Regardless of the medical care system that is studied, the economic burden caused by fall-related injuries is substantial for developed countries. In the United States alone, direct medical costs totaled $0.2 billion ($179 million) for fatal falls and $19 billion for nonfatal injuries sustained by adults aged 65 years and older in 2000 [3].

In an effort to address these alarming statistics, a large number of randomized controlled trials (RCTs) and quasi-randomized trials have investigated the efficacy of a number of different intervention strategies aimed at improving balance and/or reducing fall incidence rates among older adults [4-8]. Several different types of intervention strategies have been studied. These include stand-alone strategies (e.g., comprehensive fall risk assessments [with or without follow-up], exercise, medication management, fall-risk education and behavior change, home hazard reduction) or multifactorial interventions that include two or more different strategies.

Central to the focus of this article will be a review of key research studies that have investigated the benefits of exercise (as either a stand-alone intervention strategy or a core component of a multifactorial intervention) in lowering fall incidence rates and/or injuries among community-residing older adults at different levels of fall risk. Although many more RCTs have investigated the benefits of exercise in other settings (e.g., hospital, nursing home), they will not be discussed in this article. Current and future issues related to fall-prevention research that includes exercise as an intervention strategy will be addressed, and specific recommendations related to the design and implementation of exercise-based interventions that appropriately target different levels of fall risk will be presented in the final section of this article.

MULTIPLE ROLES OF PHYSICAL ACTIVITY

Regular participation in physical activity, defined here as movement that is intentional, voluntary, and directed toward achieving an identifiable goal [9], is not only integral to the maintenance of good health and functional independence in older adulthood [10] but also serves a primary role in the prevention of numerous chronic diseases (e.g., type 2 diabetes, cardiovascular disease, osteoporosis, certain types of cancer) [11]. Conversely, physical inactivity doubles the risk of developing a disability that will adversely affect mobility and the ability to perform even the most basic activities of daily life. This downward spiral in physical function ultimately results in heightened risk for loss of functional independence as a result of declining health and/or falls, in particular [12]. Mortality risk has also been shown to be three times higher among sedentary older adults than among their older adult counterparts who engage in higher levels of everyday physical activity [13].

Depending on the level of risk identified, physical activity may serve a primary, secondary, or tertiary role in the prevention of falls [14]. In its primary role, regular engagement in physical activity can prevent the onset of pathology and system impairments that may lead to disability and heightened risk for falls. Slowing the progression of disease and system impairments is its secondary role, while its tertiary role lies in the restoration of function to a level that allows for more autonomy in the performance of daily activities.

BENEFITS OF EXERCISE IN REDUCING FALLS: OVERVIEW OF RESEARCH FINDINGS

More than 100 RCTs or quasi-experimental trials published in the past 2 decades have investigated exercise--either as a stand-alone intervention strategy or as an important component of a multifactorial intervention strategy--and its benefits in reducing fall risk and/or fall incidence rates in the older adult population. Intervention strategies have consisted of single modes of exercise (e.g., resistance exercise, walking, tai chi) or multimodal exercise programs (e.g., aerobic endurance, flexibility, strength, and/or balance training). Some interventions have adopted a general approach, while others have targeted specific fall risk factors associated with heightened fall risk (e.g., muscle weakness, balance and gait impairments, reduced flexibility, and/or aerobic endurance). In addition to the different types of exercise, the target audience (e.g., healthy but sedentary, frail), method of delivery (i.e., group-based vs one-to-one), and intervention setting (i.e., community vs home) have also differed across studies. Finally, the type of provider (e.g., physical or occupational therapists, nurses, exercise specialists) responsible for designing and/or implementing the exercise intervention has also varied across studies [15-25].

The multicenter Frailty and Injuries: Cooperative Studies on Intervention Techniques (FICSIT) RCTs represented the first systematic and large-scale attempt to investigate the efficacy of exercise (both targeted and nontargeted) on a mutually agreed upon set of performance measures related to frailty and fall incidence rates among older adults. Although the interventions varied with respect to the type of exercise used and the intensity, frequency, and duration of the intervention, the combined multisite outcomes demonstrated a significant reduction in the risk of falling for the interventions that included exercise as a core component (i.e., 13% reduction). The risk of falling was further reduced (i.e., 24% reduction) if the exercise intervention included specific balance and gait activities [22]. Five of the seven study sites included relatively healthy community-residing older adults, while two sites recruited more frail participants residing in institutional settings.

Individualized exercise programs that target specific physical impairments identified during an initial assessment have proven effective in lowering fall incidence rates. These programs have generally been designed and supervised, at least initially, by physical or occupational therapists in the home [23-24]. Campbell et al. reported a significant reduction in the rate of falling (about one-third) in a group of frail homebound older women (=80 years) identified at high risk for falling [23]. Participants received an individualized exercise program (i.e., Otago home exercise program) designed and initially taught by a physical therapist. During the intervention period, regular telephone follow-up was conducted to maintain the participants' level of motivation. Participants who agreed to maintain the exercise program for an additional year (71% of original group) continued to experience reduced fall rates over the second year when compared with the nonexercising control group [24]. Subsequent studies conducted by the same research group with community nurses as the facilitators of the intervention proved equally effective [25-26].

The effectiveness of community-based group-structured exercise programs has also been extensively studied over the past 20 to 25 years. Here again, the content of the program and target audience have varied widely across studies. Lord et al. investigated the effect of an untargeted group-exercise program on balance, strength, and falls in a group of community-residing older adults (mean age = 79.5 years) [17]. While the 12-month intervention resulted in significantly improved physical function for the intervention group only, fall incidence rates were not significantly different between the intervention and control groups. The investigators attributed the nonsignificant reduction in falls to the untargeted nature of the intervention and the fact that the target audience was higher functioning and exhibited lower falling rates. Barnett et al. subsequently demonstrated a significant reduction in falls (40%) when a more targeted exercise intervention of similar length was implemented with community-residing older adults identified as at risk for falling [15]. Similarly, significantly fewer falls (31%) were observed in a group of frail older adults residing in retirement communities who completed a 12-month exercise program that was more specifically focused on improving their ability to perform activities of daily living [18]. In the two latter studies, greater focus was placed on teaching functional (e.g., sit-to-stand, weight transference, reaching), dynamic balance, hand-eye coordination, progressive resistance, and aerobic endurance activities. More careful attention to progressing the level of difficulty associated with the various activities also distinguished these trials from the first one conducted by Lord et al. [17].

Skelton et al. have demonstrated the efficacy of a targeted exercise intervention (i.e., the Falls Management Exercise program, or FaME) in reducing fall incidence rates among community-residing older women (mean age = 72.8 years) with a history of multiple falls [27]. The intervention consisted of group-based classes that specifically focused on dynamic balance and gait, strength, endurance, flexibility, and functional skills that were supplemented with a home exercise program based on the successful Otago home exercise program described earlier in this article [23]. A 31 percent reduction in falls was noted across the entire trial period for the targeted exercise group when compared with a control group that performed a twice weekly home exercise program. What was somewhat unique about this study was the fact that falls were monitored prospectively (3 months before start of intervention period), during the 9-month intervention period, and then for approximately 12 months after completion of the intervention.

An Eastern form of exercise known as tai chi has also emerged as a viable stand-alone exercise intervention that not only provides numerous health benefits but also appears to effectively lower fall incidence rates among certain groups of older adults [28-30]. Wolf and colleagues were the first to demonstrate the effectiveness of tai chi in reducing both fear of falling and fall incidence rates over a 4-month follow-up period in a group of relatively healthy community-residing older women ([greater than or equal to] 70 years) who participated in a 15-week group and home-based tai chi program [28]. Li et al. provided additional support for the use of tai chi as a fall-prevention strategy in a group of sedentary community-residing older adults (mean age = 77.5 years) who participated in a 6-month program [29]. In addition to demonstrating significant improvements in multiple measures of balance, physical performance, and fear of falling, older adults in the tai chi group, compared with a group that received a low-intensity flexibility program, experienced significantly fewer falls (38 vs 73, respectively) and injurious falls (7% vs 18%, respectively) during the 6-month follow-up period. The preventative benefits of tai chi training were more recently demonstrated after a 16-week, once weekly, community-based program in relatively healthy older adults (mean age = 69 years). In addition to significant improvements in balance, the risk of falling was lowered by approximately 33 percent for the tai chi group after a 6-month follow-up period [30]. In contrast, a 48-week intense tai chi program did not significantly reduce the risk ratio for falls (3-month follow-up period) in a group of older adults (70-97 years) who were categorized as frail or transitioning into frailty [31]. These findings suggest that tai chi may not be the most effective form of exercise to use when intervening with older adults who are at much higher risk for falls. Given the likelihood that multiple risk factors are contributing to heightened fall risk in this group of older adults, a multifactorial intervention strategy that includes exercise as a component versus stand-alone strategy may be warranted. The next section will describe a number of studies that have successfully applied a multifactorial intervention strategy to lowering fall risk, particularly among older adults at high risk for falls.

MULTIFACTORIAL INTERVENTION STRATEGIES WITH EXERCISE AS CORE COMPONENT

Given that more than 60 percent of all falls experienced by older adults residing in the community result from the interaction of multiple fall risk factors [32], multifactorial intervention strategies that include exercise as a core component are, not surprisingly, considered the most effective method for reducing falls, particularly when older adults at high risk for falls are targeted [5]. The primary goal of these types of strategies is usually to identify and then ameliorate or manage known fall risk factors by using a tailored intervention approach and systematic follow-up process. The fall risk factors most frequently targeted include gait and balance impairments, muscle weakness, number and type of medications, cardiovascular risk factors, vision, and environmental hazards in and around the home.

One of the first studies to examine the efficacy of a multifactorial intervention approach to reducing falls was conducted by Tinetti and colleagues as one of the multicenter FICSIT trials [33]. Men and women living in the community and with at least one risk factor associated with falling participated in a multifactorial intervention aimed at eliminating or managing identified risk factors (e.g., medication use, gait and balance, postural hypotension, home hazards). The physical therapist provided individuals identified with gait and balance impairments with a tailored exercise program containing progressive strength and balance exercises. The exercises were to be performed twice daily for 15-20 minutes over the 3-month intervention period. When compared with a control group that received usual healthcare and social visits only, fewer participants in the intervention group fell during the 1-year follow-up period (35% vs 47%, respectively). The authors also provided evidence for the intervention's cost-effectiveness [34]. In a more recent study that compared the effectiveness of a multifactorial intervention strategy in reducing fall incidence rates among healthy older adults ([greater than or equal to] 70 years) residing in the community, the impact on fall rates was considerably lower [35]. For this study, the authors investigated the individual and combined effectiveness of three a priori selected strategies: group-based exercise, home hazard management, and vision improvement. The 15-week group exercise intervention, supplemented with a home exercise program, proved the most beneficial individual fall-reduction strategy, lowering fall incidence rates by 6.9 percent over the 18-month study period, while all three strategies combined resulted in a further reduction (i.e., 14%) in estimated fall incidence rates. Unlike the two previous studies described, the interventions provided were not individually tailored based on the risk factors identified during an initial fall-risk assessment. Rather, individuals were simply randomly assigned to one of the three possible intervention groups.

In one of the first studies to investigate the efficacy of a multifactorial intervention program conducted at a community level, Clemson et al. demonstrated a 31 percent reduction in falls in the group that participated in a 7-week program that aimed to improve self-efficacy, encourage behavior change as it related to falls, and reduce falls [36]. A small group learning environment was used to achieve these goals. In addition to completing a series of educational sessions that promoted personal control and active problem-solving, participants in the intervention group received a set of strength and balance exercises that were to be performed at least three times a week at home and a list of actions and recommendations for lowering their risk for falls following an in-home fall risk assessment. Key risk factors targeted were lower-limb strength and balance, medication use, vision, environmental and behavioral home safety, and community safety. An occupational therapist facilitated the small group sessions and completed a follow-up home visit to determine the extent to which participants had addressed the recommendations provided after the initial assessment. The investigators attributed their positive findings to the fact that they not only targeted the recruitment of older adults who had a history of falling but also focused on changing behavior by using adult learning principles to build self-confidence, knowledge, and skills to prevent falls [36]. Conversely, a multifaceted intervention strategy that combined a comprehensive fall risk assessment with group-based exercise and fall risk education in a group of sedentary community-residing older adults ([greater than or equal to] 65 years) did not significantly reduce fall incidence rates during the 12-month follow-up period [21]. The authors concluded that the non-significant finding relative to fall incidence rates may have been due to their failure to target older adults who would benefit most from the intervention, an insufficiently potent intervention, or insufficient program compliance.

FUTURE RESEARCH DIRECTIONS

While the published research clearly demonstrates that exercise, whether used as a stand-alone strategy or a component of a multifactorial approach, can effectively lower fall risk and/or fall incidence rates (to a greater or lesser degree), some important research questions need to be addressed before a definitive set of recommendations can be provided to practitioners working with older adults at different levels of fall risk. In this next section of the article, I identify two fundamental research questions that need to be addressed in future research that includes exercise as an important medium for reducing falls.

Question 1: What Type of Exercise Intervention Is Most Effective and for Whom?

No clear evidence currently exists to support one type of exercise intervention over another. This is largely because few studies have directly compared the efficacy of one type of exercise intervention with another type. In one of the few studies that attempted to compare different types of exercise interventions, Nnodim et al. compared a 10-week tai chi intervention with one that combined dynamic balance and stepping activities in a sample of older adults ([greater than or equal to] 65 years) with mild balance impairments [37]. The investigators showed the latter intervention strategy to be more effective, at least as it related to dynamic balance and functional mobility indicators. The effect of either intervention on subsequent fall incidence rates was not investigated. Additional studies that directly compare different types of exercise interventions across different levels of fall risk are needed.

The dose of exercise needed to afford long-term protective benefits for older adults at different levels of fall risk also remains unclear at this time. A review of the studies described in this article and summarized in Table 1, however, does suggest that a higher dose (i.e., duration, frequency, and/or intensity) of exercise that specifically targets balance and gait is needed to lower fall incidence rates among older adults at higher risk for falls [15,18,23,27]. Perhaps one way to obtain more definitive evidence relative to the actual exercise dose needed for individuals at different levels of fall risk would be to analyze fall rates at more time points during the intervention period itself so that the point at which the intervention begins to actually lower fall risk for the targeted group (e.g., low, moderate, or high risk) can be identified.

Although multifactorial risk factor assessment and intervention strategies have been shown to have the greatest effect in reducing fall rates and fall-related injuries in older adults with a history of falls, more research is needed to determine the best combination of intervention strategies and the extent to which each individual component contributes to the total reduction in fall risk. After comparing the outcomes of single and multifactorial interventions, Campbell and Robertson recently suggested that while multifactorial intervention strategies may be appropriate for individual patients, "there is no direct trial evidence that multiple or multifactorial interventions are more effective than targeted single interventions for community populations at risk" [38, p. 657]. In contrast, the authors argued that well-designed single-factor intervention programs (that may or may not include exercise) delivered to carefully selected populations may prove as effective as multifactorial programs in fostering long-term participation and reducing fall incidence rates in at-risk groups. They further contend that targeted single interventions may be more acceptable and cost-effective for these same risk groups, because they cause less confusion, require the older adults to make fewer changes in their lives, and are simply less time and resource intensive. Certainly some support exists for this argument based on the successful outcomes of several exercise-only intervention studies described in this article that carefully matched the type and dose of exercise intervention to the level of fall risk targeted [15,18,27,29].

Little evidence currently exists for the role of exercise as either a stand-alone or an integrated component of a multifactorial intervention strategy aimed at reducing falls and/or fall risk among older adults diagnosed with dementia. The only RCT published to date did not find a multifactorial intervention approach to be effective in lowering fall incidence rates or any other fall-related measure collected (e.g., injury rates, time to first fall, hospital admission) when examined in a group of older adults with cognitive impairment and dementia [39]. Given that individuals with cognitive impairment are twice as likely to fall as their peers without cognitive impairment [40], this future line of research should receive high priority. Too few studies to date have included a sufficiently diverse sample to evaluate the benefits of a particular intervention strategy for individuals of different ethnic, cultural, and socioeconomic backgrounds. We currently know little about the type of intervention strategy that is most likely to be effective as well as feasible and practical to implement among these different segments of the older adult population. Which intervention strategies are likely to foster the highest long-term uptake among the older adult population is also unknown at this time. Some research evidence supports the inclusion of a behavioral component aimed at elevating self-efficacy and fostering long-term participation in fall-prevention activities and safe behaviors, but more research is warranted on this topic [36,41].

Question 2: How Should Effectiveness of Particular Intervention Strategies Be Assessed?

Comparing the relative effectiveness of different exercise interventions aimed at reducing falls is often difficult because of the inconsistency with which fall-related outcomes are monitored and reported. This inconsistency is in part due to the fact that the definition of what constitutes a fall varies widely across studies. While some studies use broader definitions that include slips and trips [28] or falls sustained during vigorous sporting activities (e.g., skiing, cycling) [42], other studies have adopted more stringent criteria [23,27,37]. Given that fall incidence rates often serve as the primary outcome of interest in many studies, adopting a standardized definition is critical so that the results of the different intervention strategies tested can be better compared and meaningful clinical guidelines related to fall prevention developed. Conveying clearly to the study participant what constitutes a fall is also important so that falls are accurately recorded. Zecevic et al. have previously shown that the perceptions of older adults vary widely if a clear fall definition is not provided to them [43]. In an effort to address this lack of standardization, the Prevention of Falls Network Europe recently published a consensus statement of outcome definitions that included one describing a fall (i.e., "an unexpected event in which the participant comes to rest on the ground, floor, or a lower level.") [44].

Compounding the lack of consensus on what constitutes a fall is the lack of standardization relative to the methods used to monitor fall occurrences, the types of fall outcomes used to compare group differences, and the length of time over which falls are monitored in any given investigation. While some studies rely on retrospective self-reports of falls, others use fall diaries in which falls (and other relevant information related to the fall) are recorded daily, sometimes before and during an intervention and/or for a predetermined period following the conclusion of the intervention. A wide range of fall outcomes (e.g., number of single and/or recurrent fallers, fall rates, fall-related injuries, time to first fall) are often reported across studies, once again making comparison of the relative benefits of different intervention strategies difficult. Postintervention fall-monitoring periods have ranged from as little as 2 months to 2 years, making equating the extent of the benefits derived from one intervention strategy with another difficult [7]. In some cases, fall incidence rates have only been reported for the duration of the intervention itself, with no postintervention follow-up period included. Until such time as investigators adopt a universal definition of what constitutes a fall, near-fall, slip, or trip and a consistent method for reporting outcomes across a uniform time frame, it will not be possible to accurately determine which type of intervention, irrespective of whether it includes exercise, is superior to another in reducing the incidence of falls. In a recent review of multifactorial approaches to fall-risk reduction, Gates et al. contend that the more important fall outcomes to report are fall injury and fracture rates, because they have the greatest impact on the individual's health and use of resources [8].

In general, the effectiveness of any exercise intervention is based primarily on whether fall incidence rates are appreciably lowered in the targeted group. Given that the best research outcomes have lowered fall risk or fall incidence rates no more than 50 percent in groups completing an exercise intervention, does that mean that the remaining 50 percent achieved less than satisfactory outcomes? Judgment concerning an intervention's effectiveness should consider additional outcome measures, such as the use of healthcare services, improvements in the overall level of disability, and psychosocial measures such as fear-of-falling, depression, and perceived quality of life. Given that a successful exercise intervention will likely lead to higher levels of physical activity, so, too, will it increase the risk for falls as a result of increased exposure to environmental hazards. To recognize this potentially offsetting phenomenon, fall incidence rates should be adjusted for physical activity levels during a postintervention follow-up period, as was done by Rubenstein et al. [20]. At the very least, physical activity levels should be monitored during the postintervention follow-up period by evaluating whether the particular exercise intervention changed the individual's exercise behavior. Finally, more studies aimed at establishing the cost-effectiveness of a particular intervention strategy should also be a priority for future research [25-26,34]. Changing existing policy or advocating for increased funding for fall-prevention research and programming is difficult in the absence of this information.

TRANSLATING RESEARCH INTO PRACTICE: DESIGNING EXERCISE PROGRAMS THAT ADDRESS DIFFERENT LEVELS OF FALL RISK

Despite the many questions and/or issues that need to be addressed in future research, what can be concluded with some level of confidence from the research published to date is that exercise, whether implemented as a single intervention strategy or a component of a multifactorial approach to fall prevention, is effective in reducing the physical risk factors associated with heightened fall risk and may also result in lower fall incidence rates among certain fall-risk groups. What the available research also suggests, however, is that there is no "one size suits all" intervention strategy. This is particularly true when one considers which type of exercise program to use. In this final section of the article, I offer several recommendations that can guide practitioners in selecting an exercise program that is best suited to the level of fall risk being addressed. These recommendations are also summarized in Table 2.

For older adults at low risk for falls (i.e., no history of falls in the previous year, absence of known risk factors for falls), many physical activity choices are available based on their interests and skill level. Walking is one of the simplest and least resource-intensive physical activities in which the majority of older adults can participate. Engaging in a moderately intense daily walking routine at least 30 minutes a day will help an older adult maintain adequate levels of strength, aerobic endurance, balance, and coordination. This recommendation is consistent with newly published guidelines that recommend that older adults engage in 30 minutes of moderately intense activity 5 or more days a week or 20 minutes of vigorously intense activity 3 or more days a week in order to derive important health benefits [11]. Walking has also been identified as the physical activity of choice among ethnically diverse older adults and may therefore serve as an important basis on which to build fall-risk reduction programs aimed at culturally diverse groups of older adults [45]. Older adults who feel less stable when walking or are fearful of falling may also benefit, if sufficiently coordinated, from the use of walking poles to improve their overall level of stability [46-47].

Participating in multimodal group exercise classes that include aerobic endurance, muscular strength, endurance and power, balance, and/or flexibility has also been shown to effectively reduce important physical risk factors associated with falls in relatively healthy groups of older adults [48]. In addition, group-based classes provide a socially supportive activity environment and a level of supervision and structure that many older adults need to remain engaged over the long-term. Other recreational activities that incorporate many of the important functional parameters just listed include tennis, golf (combined with walking vs riding around the course), bicycle riding, and dancing to music (e.g., ballroom, line dancing, tango).

Research findings also support alternative forms of exercise, such as tai chi, as effective means by which to reduce fall incidence rates among community-residing older adults [29-30]. Certainly the delivery of tai chi programs in community settings has a number of advantages. Tai chi requires no equipment, can be performed indoors or outdoors, and can be performed in a group or individually in the home. Although tai chi is easy to initiate in community-based settings, programming must carefully consider the form of tai chi selected and the qualifications of the instructor hired to lead the class. The Li et al. study selected the Yang style of tai chi and reduced it to 24 different movements that emphasized multidirectional weight-shifting, multisegmental (arms, trunk, legs) coordinative movements, awareness of body alignment, and synchronized breathing [29]. In their earlier study, Wolf et al. used a simplified form of tai chi consisting of 10 exercise forms that "emphasized all components of movement that typically become limited with aging" [28, p. 490]. Movement components emphasized the gradual reduction in base of support, increased body and trunk rotation, and reciprocal arm movements.

For older adults identified at moderate risk for falls (i.e., a history of one to two falls in the previous year; the presence of one or more known risk factors for falls, including comorbid medical conditions), the research described earlier in this article suggests the need for structured exercise programs that systematically target the physical risk factors identified during a comprehensive fall-risk assessment. A staged approach, as recommended by Baker et al. [49], may also be appropriate when multiple physical risk factors are identified. At this level of risk, exercise programs need to combine dynamic balance and gait activities performed in changing sensory environments with functional activities designed to improve muscular strength, endurance, and power. Just as the principle of progressive overload applies when one is exercising the cardiovascular and musculoskeletal systems, systematically and progressively challenging an individual's balance abilities is important. Activities designed to improve the older adults' ability to process and integrate sensory information, anticipate and/or react quickly and efficiently to changes in the environment, allocate attention appropriately, and perform multidirectional and segmental coordination activities in a controlled manner should be considered particularly important dimensions of balance to emphasize in these programs [50-51]. Performing increasingly challenging balance activities (e.g., balancing or walking while performing a second task) is also likely to positively influence essential cognitive processes (e.g., attention, memory, problem-solving) [52]. Observable improvements in balance and mobility also positively influence the individual's level of self-confidence and more global fear of falling. Whether this type of program is implemented in a group-structured setting or as a home-exercise program does not appear to influence the outcomes. A significant reduction in fall risk and/or fall incidence rates has been shown in both settings.

Individually based exercise programs that target known intrinsic risk factors also appear to be most effective for frail older adults who are advanced in age (>80 years) and/or at high risk for falls (i.e., an injury-related fall within the past 6 months; the presence of two or more risk factors associated with falls, including comorbid conditions that are less medically stable). A healthcare professional or a specially trained exercise specialist skilled in selecting the type of exercise based on the specific needs and abilities of the individual and progressing the difficulty level of the various exercise components is best suited to leading these types of programs. The initial focus in these types of exercise programs should be on strengthening all major muscle groups in a seated or supported standing position until sufficient strength permits the inclusion of unsupported standing exercises that emphasize dynamic balance and mobility. In addition to the improvements in physical capacity gained, these programs also positively affect the individual's perceived quality of life.

Finally, for older adults at high risk for falls (i.e., at least one injury-related fall in the previous 6 months, the presence of two or more risk factors for falls, and comorbid conditions that are less medically stable), carefully designed and longer-duration exercise programs that are included as a core component of a multifactorial intervention strategy appear to be most effective. These types of intervention strategies should begin with a comprehensive medical screening to identify the specific fall risk factors contributing to each individual's heightened fall risk. Subsequent intervention strategies should then be based on the results of the initial screening and may include such features as treatment of chronic medical conditions, an individualized exercise program, medication reviews, vision assessment, training in assistive device use, home assessment and modification, and fall-risk education aimed at changing behavior. Although multifactorial intervention strategies may be more resource-intensive and time-consuming for the recipient, careful prioritizing and/or staging of the intervention may reduce some of the confusion and resistance that Campbell et al. argue make them no more effective than single-strategy approaches [38]. Gates et al. further suggest that multifactorial interventions that "provide treatments to address risk factors rather than information and referral may be more effective" [8, p. 132].

SUMMARY AND CONCLUSIONS

Research conducted over the past 2 decades has examined the role of exercise in reducing falls among the older adult population. While important research questions must still be answered, such as what type of exercise intervention is most effective for older adults at different levels of fall risk and how best to evaluate the effectiveness of a particular intervention strategy, what can be concluded from the available evidence is that exercise, whether implemented as a single strategy or a component of a multifactorial intervention approach to fall prevention, is effective in reducing the physical risk factors associated with heightened fall risk and may also result in lower fall incidence rates among certain fall-risk groups. What the current findings also suggest, however, is that no "one size suits all" exercise intervention strategy exists. This latter finding has important implications for clinicians and practitioners who must decide which type, intensity, and dose of exercise are likely to yield the best outcomes for the patients or clients they serve. Identifying the older adults' level of fall risk is the first step in deciding which intervention strategy to use. The exercise options are many for older adults identified at low risk for falls, while the options become fewer for those older adults identified at higher levels of fall risk. The current evidence further suggests that exercise as a stand-alone strategy may not be sufficient to appreciably lower the level of fall risk in older adults identified at high risk for falls. Instead, an individually tailored exercise program that is embedded within a larger multifactorial intervention that first identifies and then prioritizes the treatment of the major risk factors contributing to the older adult's heightened fall risk is likely to be the more effective method of addressing falls in the older adult population.

ACKNOWLEDGMENTS

This material was based on work supported by the Fall Prevention Center of Excellence, Archstone Foundation, Long Beach, California (grant 57280).

The author has declared that no competing interests exist.

Submitted for publication March 19, 2008. Accepted in revised form August 18, 2008.

REFERENCES

[1.] Centers for Disease Control and Prevention. Healthy aging for older adults [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; [cited 2008 Jan 31]; Available from: www.cdc.gov/aging/.

[2.] Jeannotte L, Moore MJ, Centers for Disease Control and Prevention, Merck Company Foundation. The state of aging and health in America 2007. Whitehouse Station (NJ): The Merck Company Foundation; 2007.

[3.] Stevens JA, Corso PS, Finkelstein EA, Miller TR. The costs of fatal and non-fatal falls among older adults. Inj Prev. 2006;12(5):290-95. [PMID: 17018668]

[4.] Gillespie LD, Gillespie WJ, Robertson MC, Lamb SE, Cumming RG, Rowe BH. Interventions for preventing falls in elderly people. Cochrane Database Syst Rev. 2003; (4):CD000340. [PMID: 14583918]

[5.] Chang JT, Morton SC, Rubenstein LZ, Mojica WA, Maglione M, Suttorp MJ, Roth EA, Shekelle PG. Interventions for preventing falls in older adults: Systematic review and meta-analysis of randomized clinical trials. BMJ. 2004; 328(7441):680. [PMID: 15031239]

[6.] Sherrington C, Lord SR, Finch CF. Physical activity interventions to prevent falls among older people: Update on the evidence. J Sci Med Sport. 2004;7(1 Suppl):43-51. [PMID: 15214601]

[7.] Howe TE, Rochester L, Jackson A, Banks PM, Blair VA. Exercise for improving balance in older people. Cochrane Database Syst Rev. 2007;(4):CD004963. [PMID: 17943831]

[8.] Gates S, Fisher JD, Cooke MW, Carter YH, Lamb SE. Multifactorial assessment and targeted intervention for preventing falls and injuries among older people in community and emergency care settings: Systematic review and meta-analysis. BMJ. 2008;336(7636):130-33. [PMID: 18089892]

[9.] Newell KM. Physical activity, knowledge types, and degree programs. Quest. 1990;42(3):243-68.

[10.] Rikli RE, Jones CJ. Functional fitness normative scores for community-residing adults, ages 60-94. J Aging Phys Act. 1999;6:160-79.

[11.] Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castenada-Sceppa C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Ex. 2007;39(8):1435-45. [PMID: 17762378]

[12.] Miller ME, Rejeski WJ, Reboussin BA, Ten Have TR, Ettinger WH. Physical activity, functional limitations, and disability in older adults. J Am Geriatr Soc. 2000;48(10): 1264-72. [PMID: 11037014]

[13.] Chipperfield JG. Everyday physical activity as a predictor of late-life mortality. Gerontologist. 2008;48(3):349-57. [PMID: 18591360]

[14.] Pope AM, Tarlov AR; Institute of Medicine Committee on a National Agenda for the Prevention of Disabilities. Disability in America: Toward a national agenda for prevention. Washington (DC): National Academy Press; 1991.

[15.] Barnett A, Smith B, Lord SR, Williams M, Baumand A. Community-based group exercise improves balance and reduces falls in at-risk older people: A randomised controlled trial. Age Ageing. 2003;32(4):407-14. [PMID: 12851185]

[16.] Buchner DM, Cress ME, de Lateur BJ, Esselman PC, Margherita AJ, Price R, Wagner EH. The effect of strength and endurance training on gait, balance, fall risk, and health services use in community-living older adults. J Gerontol A Biol Sci Med Sci. 1997;52(4):M218-24. [PMID: 9224433]

[17.] Lord SR, Ward JA, Williams P, Strudwick M. The effect of a 12-month exercise trial on balance, strength, and falls in older women: A randomized controlled trial. J Am Geriatr Soc. 1995;43(11):1198-1206. [PMID: 7594152]

[18.] Lord SR, Castell S, Corcoran J, Dayhew J, Matters B, Shan A, Williams P. The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: A randomized, controlled trial. J Am Geriatr Soc. 2003;51(12):1685-92. [PMID: 14687345]

[19.] Nitz JC, Choy NL. The efficacy of a specific balance-strategy training programme for preventing falls among older people: A pilot randomised controlled trial. Age Ageing. 2004;33(1): 52-58. [PMID: 14695864]

[20.] Rubenstein LZ, Josephson KR, Trueblood PR, Loy S, Harker JO, Pietruszka FM, Robbins AS. Effects of a group exercise program on strength, mobility, and falls among fall-prone elderly men. J Gerontol A Biol Sci Med Sci. 2000;55(6):M317-21. [PMID: 10843351]

[21.] Shumway-Cook A, Silver IF, LeMier M, York S, Cummings P, Koepsell TD. Effectiveness of a community-based multifactorial intervention on falls and fall risk factors in community-living older adults: A randomized, controlled trial. J Gerontol A Biol Sci Med Sci. 2007;62(12):1420-27. [PMID: 18166695]

[22.] Province MA, Hadley EC, Hornbrook MC, Lipsitz LA, Miller JP, Mulrow CD, Ory MG, Sattin RW, Tinetti ME, Wolf SL. The effects of exercise on falls in elderly patients. A preplanned meta-analysis of the FICSIT Trials. Frailty and Injuries: Cooperative Studies of Intervention Techniques. JAMA. 1995;273(17):1341-47. [PMID: 7715058]

[23.] Campbell AJ, Robertson MC, Gardner MM, Norton RN, Tilyard MW, Buchner DM. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ. 1997;315(7115): 1065-69. [PMID: 9366737]

[24.] Campbell AJ, Robertson MC, Gardner MM, Norton RN, Buchner DM. Falls prevention over 2 years: A randomized controlled trial in women 80 years and older. Age Ageing. 1999;28(6):513-18. [PMID: 10604501]

[25.] Robertson MC, Devlin N, Gardner MM, Campbell AJ. Effectiveness and economic evaluation of a nurse delivered home exercise programme to prevent falls. 1: Randomised controlled trial. BMJ. 2001;322(7288):697-701. [PMID: 11264206]

[26.] Robertson MC, Gardner MM, Devlin N, McGee R, Campbell AJ. Effectiveness and economic evaluation of a nurse delivered home exercise programme to prevent falls. 2: Controlled trial in multiple centres. BMJ. 2001;322(7288): 701-4. [PMID: 11264207]

[27.] Skelton D, Dinan S, Campbell M, Rutherford O. Tailored group exercise (Falls Management Exercise--FaME) reduces falls in community-dwelling older frequent fallers (an RCT). Age Ageing. 2005;34(6):636-39. [PMID: 16267192]

[28.] Wolf SL, Barnhart HX, Kutner NG, McNeely E, Coogler C, Xu T. Reducing frailty and falls in older persons: An investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies of Intervention Techniques. J Am Geriatr Soc. 1996;44(5):489-97. [PMID: 8617895]

[29.] Li F, Harmer P, Fisher KJ, McAuley E, Chaumeton N, Eckstrom E, Wilson NL. Tai Chi and fall reductions in older adults: A randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2005;60(2):187-94. [PMID: 15814861]

[30.] Voukelatos A, Cumming RG, Lord SR, Rissel C. A randomized, controlled trial of tai chi for the prevention of falls: The Central Sydney tai chi trial. J Am Geriatr Soc. 2007;55(8):1185-91. [PMID: 17661956]

[31.] Wolf SL, Sattin RW, Kutner M, O'Grady M, Greenspan AI, Gregor RJ. Intense tai chi training and fall occurrences in older, transitionally frail adults: A randomized, controlled trial. J Am Geriatr Soc. 2003;51(12):1693-1701. [PMID: 14687346]

[32.] Campbell AJ, Robertson MC. Implementation of multifactorial interventions for fall and fracture prevention. Age Ageing. 2006;35 Suppl 1:ii60-64. [PMID: 16926208]

[33.] Tinetti ME, Baker DI, McAvay G, Claus EB, Garrett P, Gottschalk M, Koch ML, Trainor K, Horwitz RI. A multifactorial intervention to reduce the risk of falling among elderly older people living in the community. N Engl J Med. 1994;331(13):821-27. [PMID: 8078528]

[34.] Rizzo JA, Baker DI, McAvay G, Tinetti ME. The cost-effectiveness of a multifactorial targeted prevention program for falls among community elderly persons. Med Care. 1996;34(9):954-69. [PMID: 8792783]

[35.] Day M, Fildes B, Gordon I, Fitzharris M, Flamer H, Lord S. Randomised factorial trial of falls prevention among older people living in their own homes. BMJ. 2002; 325(7356):128-33. [PMID: 12130606]

[36.] Clemson L, Cumming RG, Kendig H, Swann M, Heard R, Taylor K. The effectiveness of a community-based program for reducing the incidence of falls in the elderly: A randomized trial. J Am Geriatr Soc. 2004;52(9):1487-94. [PMID: 15341550]

[37.] Nnodim JO, Strasburg MS, Nabozny M, Nyquist L, Galecki A, Chen S, Alexander NB. Dynamic balance and stepping versus tai chi training to improve balance and stepping in at-risk older adults. J Am Geriatr Soc. 2006; 54(12):1825-31. [PMID: 17198486]

[38.] Campbell AJ, Robertson MC. Rethinking individual and community fall prevention strategies: A meta-regression comparing single and multifactorial interventions. Age Ageing. 2007;36(6):656-62. [PMID: 18056731]

[39.] Shaw FE, Bond J, Richardson DA, Dawson P, Steen IN, McKeith IG, Kenny RA. Multifactorial intervention after a fall in older people with cognitive impairment and dementia presenting to the accident and emergency department: Randomised controlled trial. BMJ. 2003;326(7380):73. [PMID: 12521968] Erratum in: BMJ. 2003;326(7391):699.

[40.] Van Dijk PT, Meulenberg OG, Van De Sande HJ, Habbema JD. Falls in dementia patients. Gerontologist. 1993;33(2): 200-204. [PMID: 8468012]

[41.] Healy TC, Peng C, Haynes P, McMahon EM, Botler JL, Gross L. The feasibility and effectiveness of translating A Matter of Balance into a volunteer lay leader model. J Appl Gerontol. 2008;27(1):34-51.

[42.] Freiberger E, Menz HB, Abu-Omar K, Rutten A. Preventing falls in physically active community-dwelling older people: A comparison of two intervention techniques. Gerontology. 2007;53(5):298-305. [PMID: 17536207]

[43.] Zecevic AA, Salmoni AW, Speechley M, Vandervoort AA. Defining a fall and reasons for falling: Comparisons among the views of seniors, health care providers, and the research literature. Gerontologist. 2006;46(3):367-76. [PMID: 16731875]

[44.] Lamb SE, Jorstad-Stein EC, Hauer K, Becker C; Prevention of Falls Network Europe and Outcomes Consensus Group. Development of a common outcome data set for fall injury prevention trials: The Prevention of Falls Network Europe consensus. J Am Geriatr Soc. 2005;53(9): 1618-22. [PMID: 16137297]

[45.] Belza B, Walwick J, Shiu-Thornton S, Schwartz S, Taylor M, LoGerfo J. Older adult perspectives on physical activity and exercise: Voices from multiple cultures. Prev Chronic Dis [serial on the Internet]. 2004 Oct [cited 2008 Nov 7]. Available from: http://www.cdc.gov/pcd/issues/2004/oct/ 04_0028.htm/.

[46.] Church TS, Earnest CP, Morss GM. Field testing of physiological responses associated with Nordic Walking. Res Q Exerc Sport. 2002;73(3):296-300. [PMID: 12230336]

[47.] Rodgers CD, VanHeest JL, Schachter CL. Energy expenditure during submaximal walking with Exerstriders. Med Sci Sports Exerc. 1995;27(4):607-11. [PMID: 7791594]

[48.] Wallace JI, Buchner DM, Grothaus L, Leveille S, Tyll L, LaCroix AZ, Wagner EH. Implementation and effectiveness of a community-based health promotion program for older adults. J Gerontol A Biol Sci Med Sci. 1998;53(4): M301-6. [PMID: 18314570]

[49.] Baker MK, Atlantis E, Fiatarone Singh MA. Multi-modal exercise programs for older adults. Age Ageing. 2007; 36(4):375-81. [PMID: 17537741]

[50.] Rose DJ. Promoting functional independence among "at risk" and physically frail older adults through community-based fall-risk-reduction programs. J Aging Phys Activity. 2002;10(2):207-25.

[51.] Rose DJ. Fallproof!: A comprehensive balance and mobility program. Champaign (IL): Human Kinetics; 2003.

[52.] Silsupadol P, Siu KC, Shumway-Cook A, Woollacott MH. Training of balance under single-and dual-task conditions in older adults with balance impairment. Phys Ther. 2006; 86(2):269-81. [PMID: 16445340]

Debra J. Rose, PhD

Center for Successful Aging and Fall Prevention Center of Excellence, California State University, Fullerton, CA

Abbreviations: FICSIT = Frailty and Injuries: Cooperative Studies on Intervention Techniques, RCT = randomized controlled trial.

Address all correspondence to Debra J. Rose, PhD; Center for Successful Aging and Fall Prevention Center of Excellence, KHS 245, California State University, Fullerton, 800 N. State College Boulevard, Fullerton, CA; 714-278-5846; fax: 714-278-5666. Email: drose@fullerton.edu DOI: 10.1682/JRRD.2008.03.0041
Table 1.
Characteristics of reviewed studies on use of
exercise to prevent falls among older adults.

Barnett et al.,   N = 163; [greater than or  Exercise/only RCT: Group
2003 [1]          equal to] 65 yr; M & F;    exercise (1 h once/wk
                  at-risk for falling.       for 37 wk) + home
                                             exercise; designed by PT
                                             & led by exercise
                                             specialists.

Campbell et al.,  N = 233; [greater than or  Exercise/only RCT:
1997 [2] (Otago   equal to] 80 yr; HB F      Individualized in/home
home exercise     only; frail.               exercise prescribed by
program)                                     PT (first 2 mo); three
                                             times/wk for 12 mo +
                                             walk three times/wk; PT
                                             provided telephone
                                             support.

Clemson et al.,   N = 310; [greater than or  Multifactorial RCT:
2004 [3]          equal to] 70 yr; CR M &    Small group cognitive/
(Stepping On)     F; history of [greater     behavior learning (seven
                  than or equal to] 1 fall   2 h sessions for 7 wk +
                  in previous 12 mo or       community mobility
                  self-report of fall risk.  session); in/class &
                                             home exercise; f/u home
                                             visit by OT; one 1.5 h
                                             booster session after 3
                                             mo; facilitated by OT &
                                             content experts.

Day et al.,       N = 1,090; [greater than   Multifactorial RCT:
2002 [4]          or equal to] 70 yr; CR M   Combined group exercise
                  & F; relatively healthy.   (1 h once/wk for 15 wk +
                                             daily home exercise),
                                             home hazard management,
                                             &/or vision improvement;
                                             PT designed exercise
                                             content.

Freiberger et     N = 217; [greater than or  Exercise/only RCT:
al., 2007 [5]     equal to] 70 yr; M & F;    Intervention =
                  physically active & CR.    psychomotor group
                                             exercise; fitness
                                             exercise; control = wait
                                             list; group class 1 h
                                             twice/wk for 6 wk +
                                             daily home exercise of
                                             selected exercises
                                             during & after
                                             intervention period; led
                                             by exercise specialists.

Li et al.,        N = 256; [greater than or  Exercise/only RCT:
2005 [6]          equal to] 70 yr; M & F;    Intervention = tai chi 1
                  CR physically inactive.    h three times/wk for 6
                                             mo; control =
                                             stretching; led by
                                             exercise specialists.

Lord et al.,      N = 551; [greater than or  Exercise-only RCT: Group
2003 [7]          equal to] 62 yr (mean =    exercise 1 h twice-wk
                  79.5 yr); M & F;           for 12 mo, led by exer-
                  retirement communities:    cise specialists; seated
                  self-& assisted care.      FR program led by yoga
                                             instructors; NEC (usual
                                             activities); combined
                                             control.

Robertson et      N = 240; [greater than or  Exercise/only RCT:
al., 2001 [8]     equal to] 75 yr; M & F;    Individualized in/home
(Otago home       HB.                        exercise program three
exercise                                     times for 30 min/wk +
program)                                     walk twice/wk for 12 mo;
                                             led by trained nurse;
                                             control = usual care.

Rubenstein et     N = 59; [greater than or   Exercise only: Group
al., 2000 [9]     equal to] 70 yr; fall      exercise pro-gram 90 min
                  prone men only with        three times-wk for 12
                  chronic impairments.       wk; low-moderate
                                             intensity; strength,
                                             endurance, balance, &
                                             mobility focus; control
                                             = usual activity; led by
                                             exercise specialists.

Shumway-Cook et   N = 453; [greater than or  Multifaceted RCT:
al., 2007 [10]    equal to] 65 yr;           Intervention = group
(Enhance          sedentary but relatively   exercise class 1 h three
Fitness)          healthy; 75% with no fall  times/wk for 12 mo, fall
                  history in previous 3      prevention educa/tion
                  mo.                        six times for 1 h once/
                                             mo); control = received
                                             two fall education
                                             brochures; led by
                                             certified fitness
                                             trainers.

Skelton et al.,   N = 81; [greater than or   Exercise RCT: Group +
2005 [11] (FaME   equal to] 65 yr; F;        home exer-cise program
program)          living unassisted in       (group = 1 h once-wk for
                  home; history of           36 wk; home = twice 30
                  [greater than or equal     min-wk); Control = home
                  to] 3 falls.               exercise twice-wk; led
                                             by qualified exercise-
                                             for-older persons
                                             instructor.

Tinetti et al.,   N = 310; [greater than or  Intervention:
1994 [12] (Yale   equal to] 70 yr CR M & F   Combination of medi/
FICSIT Trial)     with [greater than or      cation adjustment;
                  equal to] 1 risk factor    individually tai/lored
                  for falls.                 balance, gait, &
                                             transfer training &/or
                                             behavioral instructions
                                             addressing specific risk
                                             factors; control: usual
                                             care & social visits.

Voukelatos et     [greater than or equal     Exercise RCT: Group tai
al., 2007 [13]    to] 60 yr; relatively      chi classes in community
                  healthy.                   1 h-wk for 16 wk;
                                             control = wait-list.

Wolf et al.,      N = 200; [greater than     Exercise RCT: Tai chi 1
1996 [14]         or equal to] 70 yr CR M    h/wk for 15wk + home
(Atlanta          & F; relatively healthy.   exercise vs compu/
FICSIT Trial)                                terized balance training
                                             1 h/wk for 15wk; control
                                             = education 1 h/wk for
                                             15wk.

Wolf et al.,      N = 311; = 70 yr M & F;    Exercise/only RCT:
2003 [15]         Transitioning to frailty;  Intervention = 10/50 min
                  = 1 fall in previous 12    "work time" twice/wk for
                  mo.                        48 wk; control =
                                             Wellness Education 1 h
                                             once/wk for 48 wk.

Barnett et al.,   Primary: Fall rates &      Relative to control:
2003 [1]          proportion of falls        Significant [down arrow]
                  across 12 mo               fall rate (40%),
                  intervention period        significant [down arrow]
                  (fall calendar);           injurious falls,
                  secondary: balance,        significant [up arrow]
                  strength, RT, & health     balance at 6 mo only.
                  status.

Campbell et al.,  Primary: # falls, #        Relative to control:
1997 [2] (Otago   injury falls, time         Significant [down arrow]
home exercise     between falls in 12 mo     fall rates & injurious
program)          f-u period (fall           falls, significant [up
                  calendar); secondary:      arrow] balance at 6 mo.
                  strength & balance.

Clemson et al.,   Primary: Fall incidence    Relative to control:
2004 [3]          rates over 14 mo trial     Significant [down arrow]
(Stepping On)     period (fall calendar);    falls (31%), significant
                  secondary: perceived       [up arrow] protective
                  health, mobility & self-   measures used,
                  care efficacy, physical    significant [up arrow]
                  activity level, &          mobility efficacy but
                  protective behaviors at    not self-care.
                  14 mo.

Day et al.,       Primary: Time to first     Significant [down arrow]
2002 [4]          fall over 18 mo f/u        annual fall rate (14%)
                  period (fall calendar);    for 3 interventions
                  secondary: strength,       combined, exercise
                  balance, vision, & #       single most effective
                  home hazards.              intervention,
                                             significant [up arrow]
                                             balance in exercise
                                             group.

Freiberger et     Primary: # falls, #        Significant [down arrow]
al., 2007 [5]     multiple fallers, rate     proportion of fallers
                  of falls, time to first    (32%) in fitness group
                  fall over 12 mo f/u        vs control, significant
                  period (fall calendar);    [up arrow] strength &
                  secondary: gait,           mobility for both
                  balance, strength, &       intervention groups.
                  mobility.

Li et al.,        Primary: # falls during    Relative to control:
2005 [6]          intervention & 6 mo f/u    Significant [down arrow]
                  period (fall calendar);    falls & injurious falls;
                  secondary: balance,        lower proportion of
                  gait, mobility, FOF.       fallers; significant [up
                                             arrow] balance, gait, &
                                             mobility; significant
                                             [down arrow] FOF.

Lord et al.,      Primary: # falls           Significant [down arrow]
2003 [7]          over 12 mo f-u period;     in group exercise (22%)
                  secondary: PP-choice       vs combined control &
                  stepping RT, aerobic       group-exercise subjects
                  endurance, strength,       who had fallen in
                  speed, & balance.          previous year (31%),
                                             significant [up arrow]
                                             PP in group-exercise
                                             group only at 6 mo
                                             retest.

Robertson et      # falls over 12 mo trial   Significant [down arrow]
al., 2001 [8]     period, # fall injuries    falls (46%); [down
(Otago home       (fall calendar),           arrow] serious injuries
exercise          perceived health status,   & hospital admissions,
program)          program implementation     more cost effective for
                  costs, fall-related        [greater than or equal
                  hospital costs.            to] 80 yr old group.

Rubenstein et     Primary: Fall incidence    Significant [down arrow]
al., 2000 [9]     rates, # falls/1,000 h     falls for experimental
                  of physical activity;      group per hour of
                  secondary: strength,       physical activity at 3
                  balance, endurance,        mo f/u, significant [up
                  gait, & perceived          arrow] endurance, gait,
                  health.                    & right knee flexion
                                             strength only.

Shumway-Cook et   Primary: Fall incidence    Nonsignificant [down
al., 2007 [10]    rates over 12 mo (fall     arrow] falls (25%) vs
(Enhance          calendar); secondary:      control; small but
Fitness)          strength, balance, &       significant [up arrow]
                  mobility.                  balance, mobility, &
                                             strength.

Skelton et al.,   Primary: falls & fall-     31% [down arrow] fall
2005 [11] (FaME   related injuries;          rates in experimental
program)          secondary: mortality of    group over entire trial,
                  frequent fallers,          no significant [down
                  hospitalizations, change   arrow] injuries,
                  in residence.              significant group
                                             differences in secondary
                                             outcomes.

Tinetti et al.,   Primary: # falls during    Relative to control:
1994 [12] (Yale   12 mo f/u period (fall     Significant [down arrow]
FICSIT Trial)     calendar); #               falls & presence of
                  medications; balance,      identified risk factors.
                  transfer, & gait
                  impairments at end of f/
                  u period.

Voukelatos et     Primary: Falls at 16 &     Falls [down arrow] in
al., 2007 [13]    24 wk f/u; secondary:      tai chi group (29% at 16
                  balance at baseline & 16   wk, 33% at 24 wk); [up
                  wk f/u.                    arrow] in 5/6 balance
                                             tests (tai chi only).

Wolf et al.,      Primary: Strength, ROM,    Significant [down arrow]
1996 [14]         FOF, & BC.                 multiple falls in tai
(Atlanta                                     chi group.
FICSIT Trial)

Wolf et al.,      Primary: # falls & time    Relative to control: No
2003 [15]         to first fall;             significant [down arrow]
                  secondary: balance,        falls but positive
                  strength, gait, FOF, &     trend.
                  health status.

[1.] Barnett A, Smith B, Lord SR, Williams M, Baumand A.
Community-based group exercise improves balance and reduces falls
in at-risk older people: A randomised controlled trial. Age Ageing.
2003;32(4):407-14. [PMID: 12851185]

[2.] Campbell AJ, Robertson MC, Gardner MM, Norton RN, Tilyard MW,
Buchner DM. Randomised controlled trial of a general practice
programme of home based exercise to prevent falls in elderly women.
BMJ. 1997;315(7115):1065-69. [PMID: 9366737]

[3.] Clemson L, Cumming RG, Kendig H, Swann M, Heard R, Taylor K.
The effectiveness of a community-based program for reducing the
incidence of falls in the elderly: A randomized trial. J Am Geriatr
Soc. 2004;52(9):1487-94. [PMID: 15341550]

[4.] Day M, Fildes B, Gordon I, Fitzharris M, Flamer H, Lord S.
Randomised factorial trial of falls prevention among older people
living in their own homes. BMJ. 2002;325(7356):128-33. [PMID:
12130606]

[5.] Freiberger E, Menz HB, Abu-Omar K, Rutten A. Preventing falls
in physically active community-dwelling older people: A comparison
of two intervention techniques. Gerontology. 2007;53(5):298-305.
[PMID: 17536207]

[6.] Li F, Harmer P, Fisher KJ, McAuley E, Chaumeton N, Eckstrom E,
Wilson NL. Tai Chi and fall reductions in older adults: A
randomized controlled trial. J Gerontol A Biol Sci Med Sci.
2005;60(2):187-94. [PMID: 15814861]

[7.] Lord SR, Castell S, Corcoran J, Dayhew J, Matters B, Shan A,
Williams P. The effect of group exercise on physical functioning
and falls in frail older people living in retirement villages: A
randomized, controlled trial. J Am Geriatr Soc.
2003;51(12):1685-92. [PMID: 14687345]

[8.] Robertson MC, Devlin N, Gardner MM, Campbell AJ. Effectiveness
and economic evaluation of a nurse delivered home exercise
programme to prevent falls. 1: Randomised controlled trial. BMJ.
2001;322(7288):697-701. [PMID: 11264206]

[9.] Rubenstein LZ, Josephson KR, Trueblood PR, Loy S, Harker JO,
Pietruszka FM, Robbins AS. Effects of a group exercise program on
strength, mobility, and falls among fall-prone elderly men. J
Gerontol A Biol Sci Med Sci. 2000;55(6):M317-21. [PMID: 10843351]

[10.] Shumway-Cook A, Silver IF, LeMier M, York S, Cummings P,
Koepsell TD. Effectiveness of a community-based multifactorial
intervention on falls and fall risk factors in community-living
older adults: A randomized, controlled trial. J Gerontol A Biol Sci
Med Sci. 2007;62(12):1420-27. [PMID: 18166695]

[11.] Skelton D, Dinan S, Campbell M, Rutherford O. Tailored group
exercise (Falls Management Exercise-FaME) reduces falls in
community-dwelling older frequent fallers (an RCT). Age Ageing.
2005;34(6):636-39. [PMID: 16267192]

[12.] Tinetti ME, Baker DI, McAvay G, Claus EB, Garrett P,
Gottschalk M, Koch ML, Trainor K, Horwitz RI. A multifactorial
intervention to reduce the risk of falling among elderly older
people living in the community. N Engl J Med. 1994;331(13):821-27.
[PMID: 8078528]

[13.] Voukelatos A, Cumming RG, Lord SR, Rissel C. A randomized,
controlled trial of tai chi for the prevention of falls: The
Central Sydney tai chi trial. J Am Geriatr Soc. 2007;55(8):1185-91.
[PMID: 17661956]

[14.] Wolf SL, Barnhart HX, Kutner NG, McNeely E, Coogler C, Xu T.
Reducing frailty and falls in older persons: An investigation of
Tai Chi and computerized balance training. Atlanta FICSIT Group.
Frailty and Injuries: Cooperative Studies of Intervention
Techniques. J Am Geriatr Soc. 1996;44(5):489-97. [PMID: 8617895]

[15.] Wolf SL, Sattin RW, Kutner M, O'Grady M, Greenspan AI, Gregor
RJ. Intense tai chi training and fall occurrences in older,
transitionally frail adults: A randomized, controlled trial. J Am
Geriatr Soc. 2003;51(12):1693-1701. [PMID: 14687346]

[up arrow] = increase, [down arrow] = decrease, BC = body
composition, CR = community-residing, F = female, FaME = Falls
Management Exercise, FICSIT = Frailty and Injuries: Cooperative
Studies on Intervention Techniques, f/u = follow-up, FOF =
fear-of-falling, FR = flexibility and relaxation, HB = homebound, M
= male, NEC = no exercise control, OT = occupational therapist, PP
= physical performance, PT = physical therapist, RCT = randomized
controlled trial, ROM = range of motion, RT = reaction time.

Table 2.
Key recommendations for clinicians and practitioners planning
exercise programs for older adults at various levels of fall
risk.

Patient Risk Level       Recommendation

Low *                    Multimodal group exercise programs with or
                           without home exercise.
                         Moderate-intensity walking program.
                         Tai chi class.
                         Other recreational activities with strong
                           balance component (e.g., tennis, golf,
                           bike riding).
                         Dancing (e.g., ballroom, line, tango).

Moderate ([dagger])      Structured group exercise classes that
                           systematically target identified
                           physical risk factors.
                         Well-designed and progressive home
                           exercise programs.
                         Behavioral component aimed at fostering
                           long-term involvement in fall-prevention
                           activities.

High ([double dagger])   Individually tailored exercise programs led
                           by healthcare or specially trained exercise
                           professionals who can select and progress
                           exercises based on individual's identified
                           risk factors and abilities.
                         Additional intervention strategies as
                           indicated based on comprehensive medical
                           evaluation (e.g., medication management,
                           vision assessment and/or surgical
                           intervention, home assessment and
                           modification, and assistive device
                           training).
                         Behavioral component.

* No history of falls in previous year and absence
of known risk factors for falls.

([dagger]) History of one to two falls in previous year and
presence of one or more known risk factors for falls, including
comorbid conditions.

([double dagger]) Injury-related fall in previous 6 months,
presence of two or more risk factors for falls, and comorbid
conditions that are less medically stable.
Gale Copyright: Copyright 2008 Gale, Cengage Learning. All rights reserved.