Potential for tick-borne Bartonelloses.
Subject: Medical research (Surveys)
Medicine, Experimental (Surveys)
Disease transmission (Surveys)
DNA (Surveys)
Authors: Angelakis, Emmanouil
Billeter, Sarah A.
Breitschwerdt, Edward B.
Chomel, Bruno B.
Raoult, Didier
Pub Date: 03/01/2010
Publication: Name: Emerging Infectious Diseases Publisher: U.S. National Center for Infectious Diseases Audience: Academic; Professional Format: Magazine/Journal Subject: Health Copyright: COPYRIGHT 2010 U.S. National Center for Infectious Diseases ISSN: 1080-6040
Issue: Date: March, 2010 Source Volume: 16 Source Issue: 3
Product: Product Code: 8000200 Medical Research; 9105220 Health Research Programs; 8000240 Epilepsy & Muscle Disease R&D; 2831812 Deoxyribonucleic Acid NAICS Code: 54171 Research and Development in the Physical, Engineering, and Life Sciences; 92312 Administration of Public Health Programs; 325414 Biological Product (except Diagnostic) Manufacturing
Accession Number: 224101368
Full Text: Bartonella spp. are gram-negative bacilli or coccobacilli that belong to the a-2 subgroup of Proteobacteria. According to 16S rDNA gene comparisons, they are closely related to the genera Brucella and Agrobacterium (1). A remarkable feature of the genus Bartonella is the ability of a single species to cause either acute or chronic infection that can cause either vascular proliferative lesions or suppurative and granulomatous inflammation. The pathologic response to infection with Bartonella spp. varies substantially with the status of the host's immune system; vasoproliferative lesions are most frequently reported for immunocompromised patients. To date, 13 Bartonella species and subspecies have been associated with an increasing spectrum of clinical syndromes in humans, including cat-scratch disease and chronic bacteremia (B. henselae), bacillary angiomatosis (B. henselae, B. quintana), peliosis hepatitis (B. henselae), bacteremia and/or endocarditis (B. henselae, B. quintana, B. elizabethae, B. vinsonii subsp. arupensis, B. vinsonii subsp. berkhoffii, B. koehlerae, and B. alsatica), Carrion disease (B. bacilliformis), trench fever (B. quintana), retinitis and uveitis (B. henselae, B. grahamii), myocarditis (B. vinsonii subsp. berkhoffii, B. washoensis), splenomegaly (B. bacilliformis, B. henselae, B. rochalimae), and fever and fatigue (B. henselae, B. vinsonii subsp. berkhoffii, B. tamiae) (1-3).


Ticks were first identified as potential vectors of Babesia bigemina, the agent of Texas cattle fever, in 1893 (4). There are 2 major tick families ([approximately equal to] 865 tick species worldwide): the Ixodidae, or hard ticks, characterized by a sclerotized dorsal plate, and the Argasidae, or soft ticks, characterized by their flexible cuticle. A third family, the Nuttalliellidae, is represented by a single species that is confined to southern Africa. The genus Ixodes, family Ixodidae, contains >200 species, of which 14 make up the I. ricinus complex (4). Among these 14 species, I. scapularis, I. pacificus, I. ricinus, and I. persulcatus ticks are involved in the transmission of the Borrelia burgdorferi complex, which is a prevalent cause of Lyme disease in persons in the Northern Hemisphere.

Ticks in various regions of the world are vectors for bacterial, viral, and protozoal pathogens (5). Ticks may act not only as vectors but also as reservoirs of tick-transmitted bacteria that are transmitted transstadially and transovarially in a tick species (e.g., certain Rickettsia spp. and Borrelia spp.) (5). When feeding on an infected small-mammal host, larvae and nymphs can ingest [greater than or equal to] 1 pathogens while obtaining a blood meal. Some organisms are then passaged to the next stage in the tick life cycle and can be transmissible during the subsequent blood meal (5). For each tick species, the optimal environmental conditions determine the geographic distribution; the spectrum of tick-borne pathogens; and as a result, the geographic areas of risk for tick-borne diseases, particularly when ticks are both vectors and reservoirs of specific pathogens.

Hard ticks are the primary vectors of a variety of bacterial pathogens, including Anaplasma spp., Borrelia spp., Ehrlichia spp., Coxiella burnetii, and Rickettsia spp (5-7). Anaplasma phagocytophilum is transmitted by I. persulcatus-complex ticks, including I. scapularis, I. pacificus, and I. ricinus, whereas Ehrlichia chaffeensis and Ehrlichia ewingii are transmitted by Amblyomma americanum ticks (5,6). Although some pathogens are carried by a single or limited number of tick species, other organisms such as Coxiella burnetii have been identified in >40 tick species (7). Lyme disease, caused by B. burgdorferi, is transmitted by I. scapularis and I. pacificus ticks within the United States, by I. ricinus ticks in Europe, and by other Ixodes spp. ticks in the Northern Hemisphere (5,8). Although specific Bartonella spp. are transmitted by blood-sucking arthropods, including fleas, lice, or sandflies, the only evidence to support the possibility of tick-borne transmission is indirect.

We present an overview of the various Bartonella spp. that have been detected in ticks and discuss human cases of Bartonella infection that are suggestive of tick transmission. Because of the rapidly expanding number of reservoir host-adapted Bartonella spp. that have been discovered in recent years, efforts to clarify modes of transmission are relevant to public health in terms of interrupting the transmission process. As evolving evidence supports the ability of this genus to induce chronic intravascular infections in humans, improved understanding of vector competence could facilitate efforts to block pathogen transmission, which would help improve human health (9).

Host Associations and Specificity

Bartonella spp. have a natural cycle of chronic intravascular infection in a reservoir host and a sustained pattern of bacterial transmission by a defined and evolutionarily well-adapted vector from the reservoir hosts to new susceptible hosts. Current information leads to the presumption of a long-standing and highly adapted species-specific association between a given Bartonella sp. and the preferred animal host and vector (10). Inadvertent infection of persons with at least 13 Bartonella spp. has resulted in a wide spectrum of disease manifestations. After primary infection of the natural mammalian host, a chronic, relapsing, nonclinical bacteremia occurs. At times, in wild and stray animal populations, including cats, cows, and various rodent species, the prevalence of infection within the population can approach 100% (1). Although the geographic distribution of a specific Bartonella sp. may reflect the geographic distribution of its hosts or vectors, knowledge related to vector transmission of Bartonella organisms remains inadequate.

Bartonella spp. DNA in Ticks

As an initial effort to define tick species that might serve as competent vectors for transmission of Bartonella spp., molecular epidemiology surveys to identify Bartonella spp. DNA in ticks have been conducted (2). Bartonella spp. have mostly been identified by PCR using primers targeting either specific Bartonella genes like the citrate synthase gene (gltA) gene, the riboflavin synthase gene, the heat shock protein gene (groEL), the 16S-23S intergenic spacer, the heme binding protein gene, and the cell division protein gene or the 16S rDNA gene (Table 1). Summarized results indicate that the proportion of ticks harboring Bartonella DNA can vary from low prevalences of 0.43% among questing A. americanum ticks examined in the southeastern United States (3) and 1.2% of I. ricinus ticks collected in the Czech Republic (24) to a prevalence as high as 60% in I. ricinus ticks from roe deer in the Netherlands (20) (Table 1). Bartonella spp. from various locations tend to differ. For example, Bartonella DNA related to B. doshiae, B. rattimassiliensis, and B. tribocorum has been identified in ticks only in Asia, B. bacilliformis-like DNA and B. capreoli in ticks only in Europe, and B. washoensis, B. tamiae-like DNA, and B. vinsonii subsp. berkhoffii in ticks only in the United States (Figure).

Evidence for Co-infections in Ticks

In recent years, emphasis on the potential transmission of multiple pathogens by an individual tick after attachment to an animal or person has grown. While studying different tick populations throughout the world, several researchers have identified Bartonella DNA in conjunction with known tick-transmitted organisms. Adelson et al. tested for the prevalence of B. burgdorferi, Babesia microti, A. phagocytophilum, and Bartonella spp. in 107 I. scapularis ticks collected in New Jersey (27). A large percentage of ticks (45.8%) contained DNA from at least 1 of these organisms, and 34.5% of ticks screened harbored Bartonella spp. DNA. Of the ticks positive for Bartonella by PCR, 9 (8.4%) contained B. burgdorferi DNA, 1 (0.9%) contained B. microti DNA, 1 (0.9%) contained A. phagocytophilum DNA, 1 (0.9%) contained both B. burgdorferi and A. phagocytophilum DNA, and 1 (0.9%) contained B. microti and A. phagocytophilum DNA (27). Although the primers in this study were originally selected for the species-specific amplification of B. henselae, this region of the Bartonella 16S rDNA gene is highly conserved among many Bartonella spp. In a study performed in France, Halos et al. screened 92 questing I. ricinus ticks and determined that 9.8% contained Bartonella DNA by using gltA-specific primers (22). Bartonella schoenbuchensis-like DNA (96% homology) was detected in 1 of the adult ticks tested. The authors also reported that 1% of the ticks contained Bartonella spp. and B. burgdorferi DNA, 4% contained Bartonella and Babesia spp. DNA, and 1% contained Bartonella spp., B. burgdorferi, and Babesia spp. DNA (22). Of 168 questing adult I. pacificus ticks from Santa Cruz County, California, screened for Bartonella DNA, 11 (6.55%) contained B. henselae genotype I DNA (31). Of the Bartonella-positive ticks, 1.19% also harbored B. burgdorferi DNA and 2.98% harbored A. phagocytophilum DNA (31). Loftis et al. tested Carios kelleyi ticks, argasid tick species found on bats, from residential and community buildings in Iowa, for Anaplasma, Bartonella, Borrelia, Coxiella, and Rickettsia spp. One tick was found to contain Bartonella and Rickettsia DNA, and the DNA sequence was most closely related to B. henselae (11). Recently, Sun et al. examined Haemaphysalis longicornis and I. sinensis from the People's Republic of China for Borrelia, Bartonella, Anaplasma, and Erhlichia spp. (15). Of adult and nymphal H. longicornis ticks collected in the cities of Benxi and Liaoyang, 36% of 150 groups (60 individual host-associated adults, 30 pools of 2 questing adults, and 60 pools of 5 nymphs) harbored detectable Bartonella DNA. Furthermore, 16.3% of 86 individual I. sinensis ticks (all host-associated adults) from the cities of Tiantai, Jindong, and Jiangshan contained Bartonella DNA. One tick harbored all 4 bacteria (Borrelia, Bartonella, Anaplasma, and Ehrlichia spp. DNA), and a second tick pool was positive by PCR for Borrelia, Bartonella, and Ehrlichia spp (15).


Evidence of Potential Tick Bartonella spp. Transmission to Humans

In 1992, B. henselae infection developed in 2 previously healthy, immunocompetent men within weeks of a tick bite (32) (Table 2). Both patients reported signs and symptoms generally associated with B. henselae infection: fever, muscle and joint pain, headache, and photophobia. The first patient did not recall being bitten or scratched by a cat, the general mode of B. henselae transmission to humans. B. henselae organisms were cultured from the blood of both patients and confirmed by PCR. To our knowledge, this was the first case report to suggest that ticks may be responsible for transmission of Bartonella spp. in humans. More recently, B. henselae was isolated from a boy who had severe intractable migraine headaches 10 days after an attached tick was removed from his leg, although on the basis of seroconversion, infection with B. vinsonii subsp. berkhoffii was suspected (9). Breitschwerdt et al. concluded that the boy was either co-infected or chronically infected with B. henselae, the organism isolated, and subsequently infected with B. vinsonii subsp. berkhoffii, as reflected by the documentation of seroconversion.

In a clinical study, Zangwill et al. were interested in identifying risk factors associated with development of cat-scratch disease (33). The epidemiologic survey, performed in Connecticut, contained 56 cat-scratch disease patients and their controls (persons who owned or had been in contact with cats). They used a modified random-digit dialing technique to recruit controls, and they identified 60 patients with cat-scratch disease. However, of the 60 patients whose illnesses met the case definition, 4 were not successfully matched with controls for age and cat ownership; therefore, 56 patients and their controls were enrolled in the case-control study. The controls did not differ significantly from the patients by race, sex, family size, level of maternal education, or socioeconomic status. Answers to questionnaires suggested that cat-scratch disease was more likely to occur in patients than in controls if the person owned a kitten, had contact with a kitten with fleas, or had been bitten or scratched by a kitten. Of the 56 patients, 21% were also more likely than controls to have been bitten by a tick, although bivariate analysis did not demonstrate a significant association between tick bite and cat-scratch disease development (33).

Other case reports have suggested potential human co-infections with Bartonella spp. and a known tick-transmitted organism. Eskow et al. described 4 cases in which patients from central New Jersey reported several neurologic symptoms, including headache, fatigue, insomnia, and depression, which may have resulted from Lyme disease (caused by B. burgdorferi) (28). However, other causes for their cognitive dysfunctions cannot be ruled out. Of these 4 patients, 2 had histories of Lyme disease, and 3 had B. burgdorferi DNA in the cerebrospinal fluid (CSF). One patient exhibited no laboratory evidence of Lyme disease, suggesting that these symptoms might have been caused by an agent other than B. burgdorferi. However, 2 patients reported illness within 1 week to 3 months after being bitten by a tick. Upon further investigation, all patients were seroreactive to B. henselae; immunofluorescence assay showed immunoglobulin (Ig) G titers of 64-256. According to the authors, B. henselae DNA was amplified from blood of 1 patient, from CSF of 1 patient, and from both blood and CSF of the other 2 patients (B. burgdorferi DNA also was detected in the CSF of these 2 patients). Ticks, identified as I. scapularis, found in 2 patients' homes potentially harbored both B. henselae and B. burgdorferi DNA. Whether B. henselae was specifically detected in this case series is unclear because sequencing of amplicons was not performed and because the PCR primer set targeted the Bartonella 16S rRNA, a highly conserved region. Without sequencing of amplicons or confirmation of results by targeting a more highly variable gene, ascertaining whether B. henselae was present in the ticks or in the patients would be difficult. However, the results derived from these cases are of interest because, to our knowledge, this was the first case series to propose simultaneous detection of both B. burgdorferi and Bartonella DNA in the CSF of patients with neurologic signs.

In another study, 2 of 17 patients from Poland with symptoms suggestive of neuroborreliosis seemed to be co-infected with B. burgdorferi and B. henselae (34). B. burgdorferi-specific antibodies were detected in a patient whose CSF also had detectable B. henselae DNA. The other patient was seroreactive to both B. burgdorferi and B. henselae antigens at titers of 32. The authors speculated that co-infection may be tick transmitted; however, contact with other arthropod species should be considered. Although the detection of B. henselae DNA in the CSF of these patients could be attributed to amplification of DNA from nonviable organisms or to laboratory error, the repeated documentation of B. henselae in blood and in CSF of a young woman with a previous diagnosis of classical cat-scratch disease support the potential that this bacterium can cause chronic intravascular and central nervous system infections in immunocompetent persons (9).

In a study performed in Slovenia, 86 febrile children were screened for serologic evidence of exposure to multiple tick-borne organisms within 6 weeks of a known tick bite (35). Acute- and convalescent-phase serum samples were collected from each child. Prior exposure was determined for 5 children who harbored B. henselae IgG and for 4 children who harbored B. quintana IgG. Seroconversion of IgG to both antigens was detected for only 1 child (35). Morozova et al. tested for Bartonella DNA in persons from the Novosibirsk region of Russia who had been bitten by ticks during the summers of 2003 and 2004 (38). Bartonella DNA closely related to B. henselae and B. quintana was detected in the blood of some patients by using groEL-specific primers (36). A more recent study, performed by Breitschwerdt et al., screened 42 immunocompetent patients, who had had prior animal and arthropod contact, for Bartonella spp. (37) The study included 12 women and 2 men who reported having had occupational animal contact for >10 years, including frequent animal bites, animal scratches, and arthropod exposure (e.g., fleas, ticks, biting flies, mosquitoes, lice, mites, chiggers). B. henselae or B. vinsonii subsp. berkhoffii were detected by PCR or were cultured from all patients (37). Case studies and surveys of this type suggest that ticks may serve as competent vectors of Bartonella spp., but this supposition cannot be confirmed until experimental studies demonstrating successful transmission have been performed.

Recently, Cotte et al. detailed the potential transmission of B. henselae by I. ricinus ticks (38). Using an artificial feeding platform made of rabbit skin, the authors successfully (based on PCR screening) infected ticks with B. henselae of molted ticks previously fed infected blood, suggesting that transstadial transmission may be possible. Subsequently, molted ticks were placed onto rabbit skins and fed noninfected blood, after which B. henselae was either cultured or detected by PCR analysis within 72 hours of when aliquots were taken from the previously noninfected blood. This finding indicates that during a blood meal, the organism could potentially be transferred from an infected tick to a noninfected individual. In addition, B. henselae bacteria were also present within molted ticks in sufficient numbers to cause bacteremia when tick salivary gland extracts were inoculated intravenously into domestic cats. Because ticks were not allowed to attach directly to the cats, this study supports, but does not prove, tick transmission of B. henselae by I. ricinus. Consistent with the transmission of Bartonella spp. by other arthropods such as fleas and lice, B. henselae does not seem to be transovarially transmitted in ticks because larvae hatched from B. henselae-positive (by PCR) egg clutches did not harbor detectable Bartonella DNA (2,38).


The number of zoonotic Bartonella spp. identified in the past 15 years has increased considerably. This review indicates that a diversity of Bartonella spp. DNA can be amplified from various tick species from numerous geographic locations, that tick attachment has preceded the onset of illness in a small number of patients from whom B. henselae DNA has been amplified, and that serologic and molecular evidence suggests cosegregation of Bartonella spp. with known tick-borne pathogens. Therefore, ticks might serve as potential Bartonella vectors. However, there is little evidence that Bartonella spp. can replicate within ticks and no definitive evidence of transmission by a tick to a vertebrate host. Only Kruszewska and Tylewska-Wiezbanowska reported successful isolation of Bartonella sp. from a tick (25); all other studies were based on amplification of Bartonella DNA from ticks by using PCR. As the medical relevance of the genus Bartonella continues to evolve, it is clearly necessary to determine whether ticks or other arthropods play a role in the transmission of Bartonella spp. among animals and humans. For this reason, experimental transmission studies, using infected ticks placed on live animals, are required to determine whether ticks are vector competent for the transmission of Bartonella spp.


Since the submission of this manuscript, we found 3 cases of B. henselae infection transmitted by Dermancentor spp. ticks. These patients had scalp eschar and neck lymphadenopathy (39).

DOI: 10.3201/eid1603.091685


(1.) Rolain JM, Brouqui P, Koehler JE, Maguina C, Dolan MJ, Raoult D. Recommendations for treatment of human infections caused by Bartonella species. Antimicrob Agents Chemother. 2004;48:1921-33. DOI: 10.1128/AAC.48.6.1921-1933.2004

(2.) Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB. Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med Vet Entomol. 2008;22:1-15. DOI: 10.1111/ j.1365-2915.2008.00713.x

(3.) Billeter SA, Miller MK, Breitschwerdt EB, Levy MG. Detection of two Bartonella tamiae-like sequences in Amblyomma americanum (Acari: Ixodidae) using 16S-23S intergenic spacer region-specific primers. J Med Entomol. 2008;45:176-9. DOI: 10.1603/0022-2585(2008)45[176:DOTBTS]2.0.CO;2

(4.) Swanson SJ, Neitzel D, Reed KD, Belongia EA. Coinfections acquired from Ixodes ticks. Clin Microbiol Rev. 2006;19:708-27. DOI: 10.1128/CMR.00011-06

(5.) Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis. 2001;32:897-928. DOI: 10.1086/319347

(6.) Inokuma H. Vector and reservoir hosts of Anaplasmataceae. In: Rickettsial diseases. Infectious Diseases and Therapy Series. 2007;42:199-212.

(7.) Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12:518-53.

(8.) Hildenbrand P, Craven DE, Jones R, Nemeskal P. Lyme neuroborreliosis: manifestations of a rapidly emerging zoonosis. AJNR Am J Neuroradiol. 2009;30:1079-87. DOI: 10.3174/ajnr.A1579

(9.) Breitschwerdt EB, Maggi RG, Nicholson WL, Cherry NA, Woods CW. Bartonella sp. bacteremia in patients with neurological and neurocognitive dysfunction. J Clin Microbiol. 2008;46:2856-61. DOI: 10.1128/JCM.00832-08

(10.) Houpikian P, Raoult D. Molecular phylogeny of the genus Bartonella: what is the current knowledge? FEMS Microbiol Lett. 2001;200:1-7. DOI: 10.1111/j.1574-6968.2001.tb10684.x

(11.) Loftis AD, Gill JS, Schriefer ME, Levin ML, Eremeeva ME, Gilchrist MJ, et al. Detection of Rickettsia, Borrelia, and Bartonella in Carios kelleyi (Acari: Argasidae). J Med Entomol. 2005;42:473-80. DOI: 10.1603/0022-2585(2005)042[0473:DORBAB]2.0.CO;2

(12.) Chang CC, Hayashidani H, Pusterla N, Kasten RW, Madigan JE, Chomel BB. Investigation of Bartonella infection in ixodid ticks from California. Comp Immunol Microbiol Infect Dis. 2002;25:229 36. DOI: 10.1016/S0147-9571(02)00012-7

(13.) Rar VA, Fomenko NV, Dobrotvorsky AK, Livanova NN, Rudakova SA, Fedorov EG, et al. Tickborne pathogen detection, western Siberia, Russia. Emerg Infect Dis. 2005;11:1708-15.

(14.) Kim CM, Kim JY, Yi YH, Lee MJ, Cho MR, Shah DH, et al. Detection of Bartonella species from ticks, mites and small mammals in Korea. J Vet Sci. 2005;6:327-34.

(15.) Sun J, Liu Q, Lu L, Ding G, Guo J, Fu G, et al. Coinfection with four genera of bacteria (Borrelia, Bartonella, Anaplasma, and Ehrlichia) in Haemaphysalis longicornis and Ixodes sinensis ticks from China. Vector Borne Zoonotic Dis; 2008;8:791-5.

(16.) Chang CC, Chomel BB, Kasten RW, Romano V, Tietze N. Molecular evidence of Bartonella spp. in questing adult Ixodes pacificus ticks in California. J Clin Microbiol. 2001;39:1221-6. DOI: 10.1128/ JCM.39.4.1221-1226.2001

(17.) Morozova OV, Cabello FC, Dobrotvorsky AK. Semi-nested PCR detection of Bartonella henselae in Ixodes persulcatus ticks from western Siberia, Russia. Vector Borne Zoonotic Dis. 2004;4:306-9. DOI: 10.1089/vbz.2004.4.306

(18.) Sanogo YO, Zeaiter Z, Caruso G, Merola F, Shpynov S, Brouqui P, et al. Bartonella henselae in Ixodes ricinus ticks (Acari: Ixodida) removed from humans, Belluno Province, Italy. Emerg Infect Dis. 2003;9:329-32.

(19.) Podsiadly E, Chmielewski T, Sochon E, Tylewska-Wierzbanowska S. Bartonella henselae in Ixodes ricinus ticks removed from dogs. Vector Borne Zoonotic Dis. 2007;7:189-92. DOI: 10.1089/ vbz.2006.0587

(20.) Schouls LM, Van de Pol I, Rijpkema SGT, Schot CS. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol. 1999;37:2215-22.

(21.) Schabereiter-Gurtner C, Lubitz W, Rolleke S. Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods. 2003;52:251-60. DOI: 10.1016/S0167-7012(02)00186-0

(22.) Halos L, Jamal T, Maillard R, Beugnet F, Le Menach A, Boulouis HJ, et al. Evidence of Bartonella sp. in questing adult and nymphal Ixodes ricinus ticks from France and co-infection with Borrelia burgdorferi sensu lato and Babesia sp. Vet Res. 2005;36:79-87. DOI: 10.1051/vetres:2004052

(23.) Bogumila S, Adamska M. Capreolus capreolus and Ixodes ricinus as a reservoir of Bartonella in northwestern Poland [in Polish]. Wiad Parazytol. 2005;51:139-43.

(24.) Hercik K, Hasova V, Janecek J, Branny P. Molecular evidence of Bartonella DNA in ixodid ticks in Czechia. Folia Microbiol (Praha). 2007;52:503-9. DOI: 10.1007/BF02932111

(25.) Kruszewska D, Tylewska-Wierzbanowska S. Unknown species of rickettsiae isolated from Ixodes riconus tick in Walcz. Rocz Akad Med Bialymst. 1996;41:129-135.

(26.) Matsumoto K, Berrada ZL, Klinger E, Goethert HK, Telford SR III. Molecular detection of Bartonella schoenbuchensis from ectoparasites of deer in Massachusetts. Vector Borne Zoonotic Dis. 2008;8:549-54. DOI: 10.1089/vbz.2007.0244

(27.) Adelson ME, Rao RV, Tilton RC, Adelson ME, Rao RV, Tilton RC, et al. Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in northern New Jersey. J Clin Microbiol. 2004;42:2799-801. DOI: 10.1128/JCM.42.6.2799-2801.2004

(28.) Eskow E, Rao RV, Mordechai E. Concurrent infection of the central nervous system by Borrelia burgdorferi and Bartonella henselae: evidence for a novel tick-borne disease complex. Arch Neurol. 2001;58:1357-63. DOI: 10.1001/archneur.58.9.1357

(29.) Wikswo ME, Hu R, Metzger ME, Eremeeva ME. Detection of Rickettsia rickettsii and Bartonella henselae in Rhipicephalus sanguineus ticks from California. J Med Entomol. 2007;44:158-62. DOI: 10.1603/0022-2585(2007)44[158:DORRAB]2.0.CO;2

(30.) Parola P, Shpynov S, Montoya M, Lopez M, Houpikian P, Zeaiter Z, et al. First molecular evidence of new Bartonella spp. in fleas and a tick from Peru. Am J Trop Med Hyg. 2002;67:135-6.

(31.) Holden K, Boothby JT, Kasten RW, Chomel BB. Co-detection of Bartonella henselae, Borrelia burgdorferi, and Anaplasma phagocytophilum in Ixodes pacificus ticks from California, USA. Vector Borne Zoonotic Dis. 2006;6:99-102. DOI: 10.1089/vbz.2006.6.99

(32.) Lucey D, Dolan MJ, Moss CW, Garcia M, Hollis DG, Wegner S, et al. Relapsing illness due to Rochalimaea henselae in immunocompetent hosts: implication for therapy and new epidemiological associations. Clin Infect Dis. 1992;14:683-8.

(33.) Zangwill KM, Hamilton DH, Perkins BA, Regnery RL, Plikaytis BD, Hadler JL, et al. Cat scratch disease in Connecticut. Epidemiology, risk factors, and evaluation of a new diagnostic test. N Engl J Med. 1993;329:8-13. DOI: 10.1056/NEJM199307013290102

(34.) Podsiadly E, Chmielewski T, Tylewska-Wierzbanowska S. Bartonella henselae and Borrelia burgdorferi infections of the central nervous system. Ann N Y Acad Sci. 2003;990:404-6. DOI: 10.1111/ j.1749-6632.2003.tb07400.x

(35.) Arnez M, Luznik-Bufon T, Avsic-Zupanc T, Ruzic-Sabljic E, Petrovec M, Lotric-Furlan S, et al. Causes of febrile illnesses after a tick bite in Slovenian children. Pediatr Infect Dis J. 2003;22:1078-83. DOI: 10.1097/01.inf.0000101477.90756.50

(36.) Morozova OV, Chernousova NI, Morozov IV. Detection of the Bartonella DNA by the method of nested PCR in patients after tick bites in Novosibirsk region [in Russian]. Mol Gen Mikrobiol Virusol. 2005;4:14-7.

(37.) Breitschwerdt EB, Maggi RG, Duncan AW, Nicholson WL, Hegarty BC, Woods CW. Bartonella species in blood of immunocompetent persons with animal and arthropod contact. Emerg Infect Dis. 2007;13:938-41.

(38.) Cotte V, Bonnet S, Le-Rhun D, Le Naour E, Chauvin A, Boulouis HJ, et al. Transmission of Bartonella henselae by Ixodes ricinus. Emerg Infect Dis. 2008;14:1074-80. DOI: 10.3201/eid1407.071110

(39.) Angelakis E, Pulcini C, Waton J, Imbert P, Socolovschi C, Edouard S, et al. Scalp eschar and neck lymphadenopathy caused by Bartonella henselae after tick bite. Clin Infect Dis. 2010 Jan 13; [Epub ahead of print].

Author affiliations: Universite de la Mediterranee, Marseille, France (E. Angelakis, D. Raoult); North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA (S.A. Billeter, E.B. Breitschwerdt); and University of California School of Veterinary Medicine, Davis, California, USA (B.B. Chomel)

Dr Angelakis is a clinician and researcher at the Unite des Rickettsies in Marseille. His research interests are zoonotic pathogens.

Address for correspondence Didier Raoult, Unite des Rickettsies, CNRS UMR 6020, IFR 48, Faculte de Medecine, Universite de la Mediterranee, 27 Blvd Jean Moulin, 13385 Marseille CEDEX 05, France; email: didier. raoult@gmail.com
Table 1. Ticks in which Bartonella spp. DNA has been found *

                               Prevalence of Bartonella spp.
Tick genus and species              DNA in ticks, %/no.

Amblyomma americanum                0.43/466 individuals

Carios kelleyi                       3.2/31 individuals

Dermacentor occidentalis                8.3/12 pools

D. reticulatus                      21.4/84 individuals

D. variabilis                          14.3/ 7 pools

Haemaphysalis flava                     2.7/74 pools

H. longicornis                        4.4/1,173 pools

H. longicornis                36/150 groups (60 individual fed
                            adults, 30 pools of 2 unfed adults,
                                 and 60 pools of 5 nymphs)

Ixodes nipponensis                      5.0/20 pools

I. pacificus                      19.2 of 151 individuals

I. pacificus                           11.6/224 pools

I. persulcatus                      37.6/125 individuals

I. persulcatus                 44/50 individuals in 2002 and
                                 38/50 individuals in 2003

I. persulcatus                          33.3/3 pools

I. ricinus                          1.48/271 individuals

I. ricinus                          4.9/102 individuals

I. ricinus                           60/121 individuals

I. ricinus                            A pool/12 ticks

I. ricinus                           9.8/92 individuals

I. ricinus                          7.7/103 individuals

I. ricinus                          1.2/327 individuals

I. ricinus

I. scapularis                       2.0/203 individuals

I. scapularis                       34.5/107 individuals

I. scapularis

I. sinensis                         16.3/86 individuals

I. spp.                                42.3/26 pools

I. turdus                               11.1/9 pools

Rhipicephalus sanguineus             3.2/62 individuals

Unidentified tick species

Tick genus and species            Identified Bartonella spp.

Amblyomma americanum                    B. tamiae-like

Carios kelleyi                      Resembling B. henselae

Dermacentor occidentalis               Bartonella spp.

D. reticulatus                  B. henselae (99% homology) and
                                  B. quintana (90% homology)

D. variabilis                          Bartonella spp.

Haemaphysalis flava                    Bartonella spp.

H. longicornis               Bartonella spp.; 1 pool harbored B.
                              rattimassiliensis (99.2%), 1 pool
                                harbored B. tribocorum (98.3%)

H. longicornis                         Bartonella spp.

Ixodes nipponensis                     Bartonella spp.

I. pacificus                     B. henselae, B. quintana, B.
                                washoensis, B. vinsonii subsp.
                             berkhoffii, and a Bartonella cattle

I. pacificus                           Bartonella spp.

I. persulcatus                  B. henselae (99% homology) and
                                  B. quintana (90% homology)

I. persulcatus                           B. henselae

I. persulcatus                         Bartonella spp.

I. ricinus                               B. henselae

I. ricinus                               B. henselae

I. ricinus                              Bartonella spp

I. ricinus                              Bartonella spp

I. ricinus                   Bartonella spp.; 1 adult harbored B.
                                schoenbuchensis (96% homology)

I. ricinus                               B. capreoli

I. ricinus                              Bartonella spp

I. ricinus                  Resembling B. bacilliformis ([dagger])

I. scapularis                         B. schoenbuchensis

I. scapularis                    Unidentified Bartonella spp.

I. scapularis                            B. henselae

I. sinensis                            Bartonella spp.

I. spp.                                Bartonella spp.

I. turdus                    Bartonella spp.; 1 pool harbored B.
                                   doshiae (99.2% homology)

Rhipicephalus sanguineus                 B. henselae

Unidentified tick species               Bartonella sp.

Tick genus and species         Target gene          Reference

Amblyomma americanum               IGS                 (3)

Carios kelleyi                     IGS                (11)

Dermacentor occidentalis           gltA               (12)

D. reticulatus                    groEL               (13)

D. variabilis                      gltA               (12)

Haemaphysalis flava              16S rRNA             (14)

H. longicornis                   16S rRNA             (14)

H. longicornis                     gltA               (15)

Ixodes nipponensis               16S rRNA             (14)

I. pacificus                       gltA               (16)

I. pacificus                       gltA               (12)

I. persulcatus                    groEL               (13)

I. persulcatus                    groEL               (17)

I. persulcatus                   16S rRNA             (14)

I. ricinus                  groEL, pap31, ftsZ        (18)

I. ricinus                         gltA               (19)

I. ricinus                       16S rRNA             (20)

I. ricinus                       16S rDNA             (21)

I. ricinus                         gltA               (22)

I. ricinus                         ITS                (23)

I. ricinus                       16S rRNA             (24)

I. ricinus                                       (25) ([dagger])

I. scapularis                      gltA               (26)

I. scapularis                    16S rRNA             (27)

I. scapularis                    16S rRNA             (28)

I. sinensis                        gltA               (15)

I. spp.                          16S rRNA             (17)

I. turdus                        16S rRNA             (14)

Rhipicephalus sanguineus           rbC                (29)

Unidentified tick species          IGS                (30)

* IGS, intergenic spacer; gltA , citrate synthase gene; groEL,
heat-shock protein gene; pap31, heme-binding protein gene; ftsZ,
cell-division protein gene; ribC, riboflavin synthase gene.

([dagger]) Bartonella spp. ascertained by isolation.

Table 2. Evidence of Bartonella spp. infection in persons after tick

Agent                           Tick species       Tick bite

B. henselae                        Unknown            Yes

B. henselae                        Unknown            Yes

B. henselae                        Unknown            Yes

B. henselae, Borrelia          Possibly Ixodes        Yes
burgdorferi                      scapularis

B. henselae, B. burgdorferi      Possibly I.          Yes

B. henselae, B. burgdorferi        Unknown       Not mentioned

B. henselae or B. quintana         Unknown            Yes

B. burgdorferi, B.                 Unknown            Yes
henselae, B. quintana

Bartonella spp. closely            Unknown            Yes
related to B. henselae, B.

B. henselae and/or B.              Unknown            Yes
vinsonii subsp. berkhoffii *

B. henselae, and/or B.             Unknown            Yes
vinsonii subsp.
berkhoffii ([dagger])

Agent                          Animal contact    Clinical manifestation

B. henselae                        No cat           Fever, myalgia,
                                                 arthralgia, headaches,
                                                 and light sensitivity

B. henselae                          Cat            Fever, myalgia,
                                                 arthralgia, headaches,
                                                 and light sensitivity

B. henselae                    Cats and kitten    Cat-scratch disease

B. henselae, Borrelia           Not mentioned       Low-grade fever,
burgdorferi                                       headaches, fatigue,
                                                  knee arthralgia, and

B. henselae, B. burgdorferi     Not mentioned       Fever, headache,
                                                  dizziness, fatigue,
                                                     and arthralgia

B. henselae, B. burgdorferi     Not mentioned          Meningitis

B. henselae or B. quintana      Not mentioned            Fever

B. burgdorferi, B.              Not mentioned            Fever
henselae, B. quintana

Bartonella spp. closely
related to B. henselae, B.

B. henselae and/or B.            Cats, dogs,       Fatigue, insomnia,
vinsonii subsp. berkhoffii *     potentially      arthralgia, myalgia,
                                other animal        headache, and/or
                                   species              tremors

B. henselae, and/or B.           Cats, dogs,       Seizures, ataxia,
vinsonii subsp.                 other animal     memory loss, tremors,
berkhoffii ([dagger])              species          fatigue, and/or

Agent                          Year   Reference

B. henselae                    1992     (32)

B. henselae                    1992     (32)

B. henselae                    1993     (33)

B. henselae, Borrelia          2001     (28)

B. henselae, B. burgdorferi    2001     (28)

B. henselae, B. burgdorferi    2003     (34)

B. henselae or B. quintana     2003     (35)

B. burgdorferi, B.             2003     (35)
henselae, B. quintana

Bartonella spp. closely        2005     (36)
related to B. henselae, B.

B. henselae and/or B.          2007     (37)
vinsonii subsp. berkhoffii *

B. henselae, and/or B.         2008      (9)
vinsonii subsp.
berkhoffii ([dagger])

* Patients were also seroreactive to B. henselae and/or B. vinsonii
subsp. berkhoffii.

([dagger]) Patients were also seroreactive to B. henselae, B. vinsonii
subsp. berkhoffii, and/or B. quintana.
Gale Copyright: Copyright 2010 Gale, Cengage Learning. All rights reserved.