Factors associated with consumption of diabetic diet among type 2 diabetic subjects from Ahmedabad, Western India.
Abstract: This cross-sectional study assessed the current situation of and factors associated with consumption of diabetic diet among 399 type 2 diabetes mellitus (T2DM) subjects from Ahmedabad, Western India. The study was performed with diagnosed (at least one year old) diabetic subjects who attended the Department of Diabetology, All India Institute of Diabetes and Research and Yash Diabetes Specialties Centre (Swasthya Hospital), Ahmedabad during July 2010-November 2010. The subjects completed an interviewer-administered questionnaire. The questionnaire included variables, such as sociodemographic factors, family history of diabetes, behavioural profile, risk profile (glycaemic status, hypertension, and obesity), and diet-related history (consumption of diabetic diet, consumption of low fat/skimmed milk, method of cooking, and sources for diet advice). Blood pressure, body mass index, glycosylated haemoglobin (HbA1c) level, and fasting lipid profile were measured. All analyses including multivariate logistic regression were conducted using SPSS, version 11.5. In total, 399 T2DM subjects (65% male, 35% female) with mean age of 53.16 [+ or -]7.95 years were studied. Although 73% of T2DM subjects were consuming diabetic diet, the good glycaemic control (HbA1c level <7%) was achieved only in 35% of the subjects. The majority (75%) of the subjects had a positive family history of diabetes, and 52% were obese. In 77%, the main source of dietary advice was doctor. In 36%, the main methods of cooking were: boiling and roasting. The final multivariate model showed that visit to dietician, level of education, intake of low fat, and family history of diabetes were independent predictors for diabetic diet consumption among T2DM subjects. However, longitudinal and cohort studies are required to establish the association between consumption of diabetic diet and glycaemic control.

Key words: Cross-sectional study; Diet; Glycaemic control; Glycosylated haemoglobin; Obesity; Type 2 diabetes mellitus; India
Article Type: Clinical report
Subject: Glucose tolerance tests (Analysis)
Glucose tolerance tests (Health aspects)
Research institutes (Analysis)
Research institutes (Health aspects)
Glycosylated hemoglobin (Analysis)
Glycosylated hemoglobin (Health aspects)
Disease transmission (Diet therapy)
Disease transmission (Risk factors)
Disease transmission (Research)
Disease transmission (Analysis)
Disease transmission (Health aspects)
Blood cholesterol (Analysis)
Blood cholesterol (Health aspects)
Cookery for diabetics (Analysis)
Cookery for diabetics (Health aspects)
Type 2 diabetes (Diet therapy)
Type 2 diabetes (Risk factors)
Type 2 diabetes (Research)
Type 2 diabetes (Analysis)
Type 2 diabetes (Health aspects)
Blood sugar (Analysis)
Blood sugar (Health aspects)
Chromatography (Analysis)
Chromatography (Health aspects)
Diabetics (Diet therapy)
Diabetics (Analysis)
Diabetics (Health aspects)
Prediabetic state (Diet therapy)
Prediabetic state (Risk factors)
Prediabetic state (Research)
Prediabetic state (Analysis)
Prediabetic state (Health aspects)
Polysaccharides (Analysis)
Polysaccharides (Health aspects)
Physicians (General practice) (Analysis)
Physicians (General practice) (Health aspects)
Medical screening (Analysis)
Medical screening (Health aspects)
Hypertension (Diet therapy)
Hypertension (Risk factors)
Hypertension (Research)
Hypertension (Analysis)
Hypertension (Health aspects)
Diabetic foot (Diet therapy)
Diabetic foot (Risk factors)
Diabetic foot (Research)
Diabetic foot (Analysis)
Diabetic foot (Health aspects)
Obesity (Diet therapy)
Obesity (Risk factors)
Obesity (Research)
Obesity (Analysis)
Obesity (Health aspects)
Trans fatty acids (Analysis)
Trans fatty acids (Health aspects)
Low density lipoproteins (Analysis)
Low density lipoproteins (Health aspects)
Prevalence studies (Epidemiology) (Analysis)
Prevalence studies (Epidemiology) (Health aspects)
Diabetes (Research)
Diabetes (Analysis)
Diabetes (Health aspects)
Authors: Patel, Mayur
Patel, Ina M.
Patel, Yash M.
Rathi, Suresh K.
Pub Date: 12/01/2012
Publication: Name: Journal of Health Population and Nutrition Publisher: International Centre for Diarrhoeal Disease Research Bangladesh Audience: Academic Format: Magazine/Journal Subject: Health Copyright: COPYRIGHT 2012 International Centre for Diarrhoeal Disease Research Bangladesh ISSN: 1606-0997
Issue: Date: Dec, 2012 Source Volume: 30 Source Issue: 4
Topic: Event Code: 310 Science & research
Product: Product Code: 8510000 Research & Development; 8519000 Research & Development NEC; 8000212 Diabetes R&D; 2860440 Polysaccharides NAICS Code: 5417 Scientific Research and Development Services; 54171 Research and Development in the Physical, Engineering, and Life Sciences; 325199 All Other Basic Organic Chemical Manufacturing SIC Code: 8731 Commercial physical research; 8733 Noncommercial research organizations
Accession Number: 313345727

Type 2 diabetes mellitus (T2DM) is a chronic disease associated with high morbidity and mortality worldwide (1), and India is no exception (2, 3). Currently, India is facing a three-fold rise in the prevalence of diabetes in urban as well as in rural area (4). Subjects with T2DM are at high risk of developing micro-vascular and macro-vascular complications; hence, the need for preventive action is widely acknowledged (5). The fundamentals of diabetes control largely depend upon drug therapy and lifestyle measures (increased physical activity and restriction of energy intake/diabetic diet) (6). Improved glycaemic control may reduce the development and progression of diabetic complications to some extent (7). Wealth of information is available on improving glycaemic control and decrease glycosylated haemoglobin (HbA1c) up to 2% through diet control (8-10). Coupled with this, appropriate dietary practices play a vital role in treating diabetes mellitus and, to some extent, prevent the complications of diabetes by improving risk factor profile. Strong body of evidence suggests that role of specific dietary factors remain uncertain; however, obesity and high intake of fat are associated with increased risk of diabetes (11-14).

Despite the importance of diet in the management of T2DM, diabetic subjects are often unaware of the importance in ensuring glycaemic control (15). On the other hand, lack of dietary compliance is a major limiting factor in achieving glycaemic control in T2DM. Studies revealed that generally patients fail to adhere to dietary recommendations (16, 17). Hence, the present study aimed at providing the profile of the factors associated with consumption of diabetic diet among T2DM subjects from western India as an impetus for further exploration of the sociocultural and subject-related factors affecting the outcomes of T2DM care that, in turn, will lead to redefine the diabetes control and prevention strategies in this region.


Study setting

A hospital-based cross-sectional study was conducted during July 2010-November 2010 in Ahmedabad district of Gujarat state, India. Ahmedabad is the commercial hub of the Gujarat state with an approximate population of six million.

Study population

The study population comprised diabetic subjects. We required them to be at least 40 years of age, have been diagnosed with T2DM for at least one year before enrollment for the study and, above all, it was a prerequisite for subjects to attend the Department of Diabetology, All India Institute of Diabetes and Research and Yash Diabetes Specialities Centre (Swasthya Hospital) during the study period.

Sample-size and sampling method

A sample-size of 405 was obtained by using parameter estimation method with 5% precision around the point estimate (an expected diabetic diet consumption level of 50%) with 95% confidence level. The calculated minimum sample-size was inflated by 5% to account for anticipated non-response from subjects.

On an average, there are at least 40 known diabetes cases reporting to OPD, and the monthly load of known diabetics will be around 900-1,000. Hence, during the study period of five months, the cases will be around 4,500-5,000. The study subjects were selected through systematic random sampling strategy for 4,000 study subjects (on conservative side) who reported to the OPD. Selection of the first case was done from within the first 10 subjects (in our case, it was number 6), followed by adding 10 to the number till the required sample-size of 405 was achieved.

Procedure for data collection

After recruitment of the subjects based on selection criteria and obtaining informed consent, the details of the study methodology were explained to them; a detailed history, including data on age, sex, education, occupation, smoking status, alcohol consumption, diabetic diet, method of cooking, and source of advice regarding diet, were recorded on a close-ended proforma. Diabetic diet was defined as a dietary adjustment for patients with diabetes mellitus intended to decrease the need of insulin or oral hypoglycaemic agents to avoid wide fluctuations in plasma glucose levels and to control weight by adjusting caloric and carbohydrate intake. Diabetic diet usually contains low-glycaemic index food, with similar amount of protein, complex carbohydrates, fibres, and unsaturated fatty acids as in food for general public. Diabetic diet was evaluated by dietary recall of the last 3 days, including timings, quantity of each meal and snacks, frequency of extra meal and food consumed from outside home, and the calculated average calorie consumed per day. All the subjects were also interviewed regarding history of hypertension. A general physical examination was also performed.


All anthropometric measurements were recorded using standardized procedures. Study subjects also underwent various clinical tests, such as blood tests for plasma glucose, glycosylated haemoglobin (HbA1c), and lipid levels. Blood samples were collected after ensuring 12 hours of overnight fasting. Total lipids, triglycerides (TG), and high-density lipoprotein-cholesterol (HDL-C) levels were estimated in serum, using kits (End Point Assay with Liquid Clearing Factor-LCF, Span Diagnostics Ltd. India). Low-density lipoprotein-cholesterol (LDL-C) was calculated using the Friedewald formula: LDL-C+TC-[HDL-C-(TG in mg/dL/5)] (18).

The current status of diabetes mellitus was measured using the criteria established by the American Diabetes Association (19), i.e. a medical record indicating either a fasting plasma glucose (FPG) level of >7.0 mmol/L or [greater than or equal to]126 mg/dL after a minimum 12-hour fasting, or 2-hour post-glucose level (oral glucose tolerance test) of >11.1 mmol/L or [greater than or equal to]200 mg/dL on more than one occasion, with symptoms of diabetes.

Blood pressure was recorded after the subjects had rested for at least ten minutes. The equipment was mercury sphygmomanometer (Diamond Deluxe BP apparatus, Pune, India). The machine was Regularly inspected and validated. An appropriately-sized cuff (cuff bladder encircling at least 80% of the arm) was used for ensuring accuracy. It was applied on the right arm. The stethoscope bell was placed lightly over the brachial artery, and the blood pressure was recorded to the nearest 2 mmHg, reading from the top of the mercury meniscus. Systolic blood pressure (SBP) was recorded at the first appearance of two or more Korotkoff sounds and the disappearance of Korotkoff sound (onset of phase 5) was used for defining the diastolic blood Pressure (DBP). Two readings were taken ten minutes apart, and mean of the two was considered the actual blood pressure. Hypertension was diagnosed based on the drug treatment for hypertension or if the blood pressure was >130/80 mmHg according to the Joint National Committee-7 (JNC-VII) criteria for diabetics (20, 21). The study subjects were classified into two groups, based on the history of antihypertensive drugs. The study subjects in group one were defined as not taking drugs for hypertension, were without past history of hypertension with normal blood pressure at the time of study or were detected for the first time to have hypertension, and known cases of hypertension not taking antihypertensive drugs. In group two, the study subjects were defined as taking drugs for hypertension, were having either hypertension in control with drugs or uncontrolled blood pressure even with drugs.

Body mass index (BMI) values for Indians were defined according to the recommendations by Indian Council of Medical Research. A study subject was considered to be obese if BMI was >25 kg/[m.sup.2] and overweight when BMI was 23-24.9 kg/[m.sup.2] (22).

Glycosylated haemoglobin (HbA1c) was measured by the high-pressure liquid chromatography (HPLC) method, using the variant machine (BIORAD, Hercules, California, USA). Reference non-diabetic range is 4.0-6.0%. Control sera were included in each batch of samples analyzed. The criterion for glycaemic status was <7% (good control), 7-8% (suboptimal control), 8-9% (inadequate control), and >9% (uncontrolled) (23).

Data analysis

Data were analyzed using the SPSS software (version 11.5). Means, standard deviations, and percentages were used for descriptive analysis. Student's f-test was used for testing the significance of differences between the mean values of two continuous variables. Univariate logistic regression analysis was conducted by comparing the outcome variable (consuming diabetic diet) with each independent variable of interest (age, sex, visiting dietician, level of education, occupation, glycaemic status, duration, and family history of diabetes), using odds ratio (OR) and their 95% confidence intervals (CI). Likelihood ratio test was used in estimating odds ratio and 95% CI for all associations of interest. Multivariate logistic regression analysis was performed to adjust for simultaneous effects of multiple factors or to control the effects of confounding factors on the outcome variable. The logistic regression model was used because the dependent variable was dichotomous (24)--either a diabetic subject was consuming diabetic diet or not consuming diabetic diet. The criteria for inclusion of factors in the multivariate analysis were: all variables from the univariate analysis with a p value of [less than or equal to]0.1, along with all the variables of known biological importance. To assess the importance of each variable included in the model, Wald statistic for each variable was used. The parameters of the logistic regression model were estimated by the maximum likelihood method. The adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were computed using the estimates of parameters of final model. Selection of final model was based on parsimony, biological interpretability, and statistical significance. The probability (p) level of less than 0.05 was considered significant.

Ethical approval

The Institutional Review Board of the All India Institute of Diabetes and Research reviewed and approved the study protocol and instrument.


A sample of 405 diabetic subjects was enrolled. Of the total study population, 399 (98.5%) had T2DM, and 6 (1.5%) had type 1 diabetes mellitus. Hence, analysis was performed on 399 T2DM subjects. Of 399 T2DM, 65% were male, and 96% were literate. The study subjects were evenly distributed in four quartiles of age with mean of 53.16[+ or -]7.95 years. Ninety-one percent (365/399) of the subjects were following the Hinduism religion (Table 1). The mean weight (kg) and height (cm) were (69.04[+ or -]10.50) and (164.51[+ or -]9.75) respectively. The mean duration of diabetes since diagnosis was 5.95[+ or -]4.42 years.

Risk and behaviour profile

The findings of the study showed that 140 (35%) had good glycaemic control (HbA1c <7%). The findings showed the subjects had a mean BMI of 25.57[+ or -]4.05. Only 21% of the subjects were of normal weight; the majority were either overweight (BMI 23-24.99 kg/[m.sup.2], 24%) or obese (BMI [greater than or equal to]25 kg/[m.sup.2], 52%). About half (198/399) of the subjects had positive history of hypertension, and three-fourths (300/399) had positive family history of diabetes. Only 37% of the subjects were performing self-testing for blood sugar. The study also revealed that 95 (24%) of the subjects were smokers, and 32 (8%) were consuming alcohol (Table 1).

There was a significant (p<0.05) difference between male and female subjects with respect to mean weight (male=71.101[+ or -] 9.809 kg, female=65.165[+ or -]10.498 kg), height (male=169.83 [+ or -]6.875 cm, female=154.66[+ or -]5.831 cm), and BMI (male= 24.64[+ or -]3.523, female=27.30[+ or -]4.418) (Table 2).

Dietary practices

Majority (73%) of the subjects consuming diabetic diet were recommended by the family physicians/ dieticians. However, only 39% reported that they had visited dietician since their diagnosis of diabetes, and only 2% reported counting calorie intake. Doctors/family physicians were reported to be the good source of advice regarding diet by 77% study population. The main method of cooking was: boiling and roasting (36%). Majority (88%) reported taking low fat or skimmed milk (Table 3).

Results of univariate analysis showed that visit to a dietician (OR=9.7, 95% CI=4.898-19.465), secondary level of education (OR=2.6, 95% CI=1.611-4.128), and low intake of fat (OR=2.6, 95% CI=1.385-4.760) are significantly associated with consumption of diabetic diet among T2DM subjects. Family history of diabetes is marginally associated with consumption of diabetic diet among T2DM subjects (Table 4). However, in univariate analysis, not a single factor was significantly associated with glycaemic status.

The final multivariate logistic regression model revealed that compared to the subjects not consuming diabetic diet, those who consumed diabetic diet were more likely to visit dietician (adjusted OR=10.6, 95% CI=5.124-21.816), consume low fat (adjusted OR=2.2, 95% CI=1.078-4.291), had higher level of education (adjusted OR=3.5, 95% CI=2.020-5.948), and have positive family history of diabetes (adjusted OR=1.8, 95% CI=0.996-3.094)


Diabetes, literally a 'sweet' disease, is slowly but surely spreading around the world, and India today is home to one of the world's fastest-growing diabetic population (25). Hence, need for preventive actions through lifestyle modifications (diet control, physical exercise, etc.) would be widely given due importance (26).

The main factors observed in our study population were visit to dieticians, level of education, consumption of low fat/skimmed milk, and presence of family history of diabetes. Majority (88%) of the study subjects were consuming low fat/skimmed milk, which differ from a study by Al-Kaabi et al. (23). The reason for discrepancy may be that our study subjects were more likely to seek dietary advice from family physician/dietician. Diet planning is the mainstay in the self-management and control of T2DM (23). In the present study, 73% of the subjects were Consuming diabetic diet, which differs from our previous report (27). This suggests that our study population was seriously considering the dietary advice. The main sources of dietary advice were: family physicians (77%) and dieticians (4%) who had a minimal role in dietary advice; the finding is consistent with those of previous studies (15, 23). The possible explanation for this may be: easier access to family physicians than dieticians.

This study confirms our previous report regarding family history of diabetes among T2DM subjects (27). Result also showed that very few study subjects (14/399) were illiterate. This is expected because sample of this study was drawn from speciality hospital located in urban area.

Our findings for obesity (52%) among T2DM subjects are consistent with previous reports (28-31). Findings of this study also confirm the previous reports of low level of self-monitoring of blood sugar (32). This suggests that there might be a lack of awareness of its importance in relation to control of diabetes.

In this study, only 35% subjects had good glycaemic control, which is supported by reports from Holmstrom et al. (34%) and Al-Maskari et al. (38%) (33-34). However, this study could not Demonstrate any significant association between diabetic diet and glycaemic control, despite there is high percentage of study subjects consuming diabetic diet. This suggests that our study subjects might have started consuming diabetic diet recently, which has insignificant impact on glycaemic status in short duration.


The study has some weaknesses; only diet recall method was used for the last 3 days, and the study did not use any additional data on duration of diabetic diet consumption, which may either reduce or exaggerate the result of glycaemic control. This might be the reason behind insignificant association between diabetic diet and glycaemic control. Total reliance on the subjects regarding diabetic diet was another limitation. This is a hospital-based study from urban setup, which may not be representative of and applicable to general population. However, this could provide a reasonably precise and reliable estimate of factors associated with consumption of diabetic diet among T2DM subjects from western India. Such weaknesses may become a guide for future studies.


This study revealed that majority (73%) of the subjects were consuming diabetic diet. The study also showed that visit to dieticians, level of education, consumption of low fat/skimmed milk, and presence of family history of diabetes were the main factors associated with consumption of diabetic diet. Self-monitoring of blood sugar is done by few subjects (37%).


Based on our findings we recommend the following:

* Visit to a dietician must be emphasized

* Frequent self-monitoring of blood sugar level needs to be taught and encouraged because it is associated with good glycaemic control.

Despite limitations, this study underlines the need for further investigation in India through longitudinal and cohort study designs to establish the association between consumption of diabetic diet and glycaemic control


The study was supported by All India Institute of Diabetes and Research, Ahmedabad, India. The authors would like to express their sincere thanks to all the diabetic subjects who participated in the study. They would also like to thank Dr. W.Q. Shaikh for reviewing the manuscript.


(1.) van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2005;294:97-104.

(2.) Mudaliar S. New frontiers in the management of type 2 diabetes. Indian J Med Res 2007;125:275-96.

(3.) Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047 53.

(4.) Ebrahim S, Kinra S, Bowen L, Andersen E, Ben-Shlomo Y, Lyngdoh T et al.; Indian Migration Study group. The effect of rural-to-urban migration on obesity and diabetes in India: a cross-sectional study. PLoS Med 2010;7:e1000268.

(5.) Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S, Ganesan A et al. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban South India--the Chennai Urban Rural Epidemiology Study (CURES-17). Diabetologia 2006;49:1175-8.

(6.) Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001;345:790-7.

(7.) Kumpatla S, Medempudi S, Manoharan D, Viswanathan V. Knowledge and outcome measure of HbA1c testing in Asian Indian patients with type 2 diabetes from a tertiary care center. Indian J Community Med 2010;35:290-3.

(8.) Pastors JG, Warshaw H, Daly A, Franz M, Kulkarni K. The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabefes Care 2002;25:608-13.

(9.) Pi-Sunyer FX, Maggio CA, McCarron DA, Reusser ME, Stern JS, Haynes RB et al. Multicenter randomized trial of a comprehensive prepared meal program in type 2 diabetes. Diabetes Care 1999;22:191-7.

(10.) Kulkarni K, Castle G, Gregory R, Holmes A, Leontos C, Powers M et al.; The Diabetes Care and Education Dietetic Practice Group. Nutrition Practice Guidelines for Type 1 Diabetes Mellitus positively affect dietitian practices and patient outcomes. J Am Dief Assoc 1998;98:62-70.

(11.) Ni Mhurchu C, Parag V, Nakamura M, Patel A, Rodgers A et al.; Asia Pacific Cohort Studies Collaboration. Body mass index and risk of diabetes mellitus in the Asia-Pacific region. Asia Pac J Clin Nutr 2006;15:127-33.

(12.) Hu FB, van Dam RM, Liu S. Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia 2001; 44:805-17.

(13.) Schulze MB, Manson JE, Willett WC, Hu FB. Processed meat intake and incidence of Type 2 diabetes in younger and middle-aged women. Diabetologia 2003;46:1465-73.

(14.) Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med 2004;164:2235-40.

(15.) Abioye-Kuteyi EA, Ojofeitimi EO, Ijadunola KT, Fasanu AO. Assessment of dietary knowledge, practices and control in type 2 diabetes in a Nigerian teaching hospital. Niger J Med 2005;14:58-64.

(16.) Monnier L, Grimaldi A, Charbonnel B, Iannascoli F, Lery T, Garofano A et al.; Mediab. Management of French patients with type 2 diabetes mellitus in medical general practice: report of the Mediab observatory. Diabetes Metab 2004;30:35-42.

(17.) Rivellese AA, Boemi M, Cavalot F, Costagliola L, De Feo P, Miccoli R et al.; The Mind.it Study Group(FoRiSID). Dietary habits in type II diabetes mellitus: how is adherence to dietary recommendations? Eur J Clin Nutr 2008;62:660-4.

(18.) Chen Y, Zhang X, Pan B, Jin X, Yao H, Chen B et al. A modified formula for calculating low-density lipoprotein cholesterol values. Lipids Health Dis 2010;9. 5 p. (http:// www.ncbi.nlm.nih.gov/pmc/articles/PMC2890624/pdf/1476-511X-9-52. pdf).

(19.) American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2006;29(Suppl 1):S43-8.

(20.) Reddy KS, Prabhakaran D, Chaturvedi V, Jeemon P, Thankappan KR, Ramakrishnan L et al. Methods for establishing a surveillance system for cardiovascular diseases in Indian industrial populations. Bull World Health Organ 2006;84:461-9.

(21.) Lenfant C, Chobanian AV, Jones DW, Roccella EJ; Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Seventh report of the Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7): resetting the hypertension sails. Hypertension 2003;41:1178-9.

(22.) Misra A, Chowbey P, Makkar BM, Vikram NK, Wa sir JS, Chadha D et al.; Concensus Group. Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. J Assoc Physicians India 2009;57:163-70.

(23.) Al-Kaabi J, Al-Maskari F, Saadi H, Afandi B, Parkar H, Nagelkerke N. Assessment of dietary practice among diabetic patients in the United Arab Emirates. Rev Diabet Stud 2008;5:110-5.

(24.) Aldrich JH, Nelson FD. Linear probability, logit and probit models. Beverly Hills, CA: Sage, 1984. 96 p. (SAGE University Paper Series: Quantitative Applications in the Social Sciences. Vol. 45).

(25.) Deepa M, Pradeepa R, Rema M, Mohan A, Deepa R, Shanthirani S et al. The Chennai Urban Rural Epidemiology Study (CURES)--study design and methodology (urban component) (CURES-I). J Assoc Physicians India 2003;51:863-70.

(26.) Yang K, Lee YS, Chasens ER. Outcomes of health care providers' recommendations for healthy lifestyle among U.S. adults with prediabetes. Metab Syndr Relat Disord 2011;9:231-7.

(27.) Patel M, Patel IM, Patel YM, Rathi SK. A hospital-based observational study of type 2 diabetic subjects from Gujarat, India. J Health Popul Nutr 2011;29:265-72.

(28.) Mayer-Davis EJ, Costacou T. Obesity and sedentary lifestyle: modifiable risk factors for prevention of type 2 diabetes. Curr Diab Rep 2001;1:170-6.

(29.) Lieberman LS. Dietary, evolutionary, and modernizing influences on the prevalence of type 2 diabetes. Annu Rev Nutr 2003;23:345-77.

(30.) Bener A, Al-Suwaidi J, Al-Jaber K, Al-Marri S, Elbagi IE. Epidemiology of hypertension and its associated risk factors in the Qatari population. J Hum Hypertens 2004;18:529-30.

(31.) Musaiger AO, Al-Mannai MA. Social and lifestyle factors associated with diabetes in the adult Bahraini population. JBiosoc Sci 2002;34:277-81.

(32.) Saadi H, Carruthers SG, Nagelkerke N, Al-Maskari F, Afandi B, Reed R et al. Prevalence of diabetes mellitus and its complications in a population-based sample in Al Ain, United Arab Emirates. Diabetes Res Clin Pract 2007;78:369-77.

(33.) Holmstrom IM, Rosenqvist U. Misunderstandings about illness and treatment among patients with type 2 diabetes. J Adv Nurs 2005;49:146-54.

(34.) Al-Maskari F, El-Sadig M. Prevalence of risk factors for diabetic foot complications. BMC Fam Pract 2007;8:59.

Mayur Patel (1), Ina M. Patel (1), Yash M. Patel (1), Suresh K. Rathi (2)

(1) Swasthya Hospital, All India Institute of Diabetes and Research, Narainpura, Ahmedabad 380013, Gujarat, India; (2) Department of Community Medicine, SBKS Medical Institute and Research Centre, Sumandeep Vidyapeeth, Piparia, Vadodara 391 760, Gujarat, India

Correspondence and reprint requests:

(Soft copy will be available from the authors

Dr. Suresh Kumar Rathi

F-102, Aalekh Complex

8 Amravati Society, Near Yash Complex

Gotri Road, Vadodara


India 390021

Email: rathisj07@gmail.com
Table 1. Sociodemographic characteristics and
profile of clinical and other associated factors of type 2
diabetic subjects from Ahmedabad, Western India (n=399)

Characteristics                       Number    Percent-
                                      (n=399)    age *
Age (years)

  Up to 47                            109         27
  >47-52                               98         25
  >52-58                              102         25
  >58                                  90         23


  Male                                259         65
  Female                              140         35

Marital status

  Never married                        14         4
  Ever married                        385         96


  Hinduism                            365         91
  Islam                                15         4
  Christianity and others              19         5

Level of education

  No education                         14         4
  Primary school                       84         21
  Secondary school                    176         44
  College level                       107         26
  University level                     14         4
  Professional degree (CA,
  MBA, MBBS, etc.)                     4          1


  Govt. service                        8          2
  Professional                         12         3
  Private service                      87         22
  Business                            116         29
  Household work/retired              176         44

Type of diabetes

  T2DM                                 399       100

Mode of diagnosis of diabetes

  Symptomatic                         373         93
  At screening                         23         6
  Incidental                           3          1

Duration of diabetes (years)

  1-2                                 105         26
  >2-5                                120         30
  >5-9                                 90         23
  >9                                   84         21

Glycaemic status (%)

  <7 (good control)                   140         35
  7-8 (suboptimal control)            120         30
  >8-9 (inadequate control)            80         20
  >9 (uncontrolled)                    59         15

Family history of diabetes

  Positive                            300         75
  Negative                             99         25

Body mass index (BMI) group

  (<18.5 kg/[msup.2])                  13         3
  Normal (18.5-22.9 kg/[m.sup.2])      83         21
  (23.0-24.9 kg/[m.sup.2])             95         24
  Obese ([greater than or equal to]   208         52
  25.0 kg/[m.sup.2])

Self-monitoring blood sugar

  Yes                                 146         37
  No                                  253         63


  Present                             198         50
  Not present                         201         50


  Yes                                  95         24
  No                                  304         76

Alcohol consumption
  Yes                                  32       8
  No                                  367       92

* All percentages rounded to whole numbers

Table 2. Characteristics of the study population, clinical and
laboratory findings sex among type 2 diabetic subjects from
Ahmedabad, Western India (n=399)

Characteristics                          Mean[+ or -]SD


Age (years)                            52.95[+ or -]8.136
Weight (kg)                           71.101[+ or -]9.809
Height (cm)                           169.83[+ or -]6.875
Body mass index (kg/[m.sup.2])         24.64[+ or -]3.523
Duration of diabetes (years)           6.027[+ or -]4.353

Blood pressure without drugs (n=201)
  Systolic (mmHg)                     130.45[+ or -]14.076
  Diastolic (mmHg)                     83.15[+ or -]7.261

Blood pressure with drugs (n=198)
  Systolic (mmHg)                     135.34[+ or -]16.845
  Diastolic (mmHg)                     83.14[+ or -]9.469

Lipid profile (n=389)

  LDL cholesterol (mg/dL)             111.19[+ or -]36.297
  HDL cholesterol (mg/dL)              41.42[+ or -]5.000
  Triglycerides (mg/dL)               187.93[+ or -]118.826
  Total lipids (mg/dL)                714.46[+ or -]167.240

Characteristics                           Mean[+ or -]SD


Age (years)                             53.55[+ or -]7.602
Weight (kg)                            65.165[+ or -]10.498
Height (cm)                            154.66[+ or -]5.831
Body mass index (kg/[m.sup.2])          27.30[+ or -]4.418
Duration of diabetes (years)            5.828[+ or -]4.558

Blood pressure without drugs (n=201)
  Systolic (mmHg)                      132.39[+ or -]14.639
  Diastolic (mmHg)                      83.17[+ or -]8.166

Blood pressure with drugs (n=198)
  Systolic (mmHg)                      134.93[+ or -]15.936
  Diastolic (mmHg)                      84.10[+ or -]8.207

Lipid profile (n=389)

  LDL cholesterol (mg/dL)              116.34[+ or -]33.184
  HDL cholesterol (mg/dL)               42.74[+ or -]6.029
  Triglycerides (mg/dL)                181.67[+ or -]119.690
  Total lipids (mg/dL)                 711.99[+ or -]143.014


                                       p value

Age (years)                             0.475
Weight (kg)                            <0.001
Height (cm)                            <0.001
Body mass index (kg/[m.sup.2])         <0.001
Duration of diabetes (years)            0.669

Blood pressure without drugs (n=201)
  Systolic (mmHg)                       0.350
  Diastolic (mmHg)                      0.986

Blood pressure with drugs (n=198)
  Systolic (mmHg)                       0.861
  Diastolic (mmHg)                      0.598

Lipid profile (n=389)

  LDL cholesterol (mg/dL)               0.172
  HDL cholesterol (mg/dL)               0.220
  Triglycerides (mg/dL)                 0.623
  Total lipids (mg/dL)                  0.884

Table 3. Dietary practices among type 2 diabetic
subjects from Ahmedabad, Western India (n=399)

Characteristics               Number   Percent-
                              (n=399)   age *
Consuming diabetic diet

  Yes                           290       73
  No                            109       27

Consuming low fat/
skimmed milk

  Yes                           351       88
  No                            48        12

Visited dietician since
diagnosis of diabetes

  Yes                           154       39
  No                            245       61

Counting daily calorie

  Yes                            7        2
  No                            392       98

Methods of cooking

  Boiling and frying            119       30
  Boiling and roasting          143       36
  Roasting and frying           66        16
  Boiling, frying, and
  roasting                      71        18

Best source of advice
regarding diet

  Self                          51        13
  Family member                 18        4
  Friend/colleague               4        1
  Doctor/family physician       306       77
  Dietician                     15        4
  Self, family member,
  and doctor                     5        1

Management of diabetes
through drugs with diet
or physical activity

  Yes                           342       86
  No                            57        14

Using drugs to control

  Yes                           173       43
  No                            226       57

Following physical
by family physician

  Yes                           215       54
  No                            184       46

* All percentages rounded to whole numbers

Table 4. Univariate logistic analysis of the factors among
hospital-based T2DM subjects from Ahmedabad, Western
India (n=399)

                                  Consuming diabetic diet

Variable                           Yes       No       OR
                                  (n=290)  (n=109)
Age (years)

  Up to 47                         79        30      1.07
  >47-52                           74        24      1.25
  >52-58                           73        29      1.02
  >58                              64        26       1


  Male                             189       70      1.04
  Female                           101       39       1

Visit to dieticians

  Yes                              144       10      9.7
  No                               146       99       1

Level of education

  No education                      6         8      0.48
  Up to secondary                  208       52      2.58
  Above secondary                  76        49       1


  Housewifery/retired              133       43      1.32
  Business                         82        34      1.03
  Service                          75        32       1

Duration of diabetes (years)

  1-2                              69        36      0.81
  >2-5                             97        23      1.78
  >5-9                             65        25      1.10
  >9                               59        25       1

Family history of diabetes

  Positive                         224       76      1.47
  Negative                         66        33       1

Consuming low fat/skimmed

  Yes                              264       87      2.56
  No                               26        22       1

Glycaemic status (%)

  <7                               99        41       1
  [greater than or equal to]7      191       68      1.16

Variable                           (95% CI)      p value

Age (years)

  Up to 47                       (0.575-1.989)    0.831
  >47-52                         (0.655-2.394)    0.496
  >52-58                         (0.546-1.914)    0.944
  >58                                  -


  Male                           (0.658-1.652)    0.859
  Female                               -

Visit to dieticians

  Yes                            (4.898-19.465)  <0.001
  No                                   -

Level of education

  No education                   (0.158-1.479)    0.203
  Up to secondary                (1.611-4.128)   <0.001
  Above secondary                      -


  Housewifery/retired            (0.771-2.260)    0.312
  Business                       (0.579-1.829)    0.922
  Service                              -

Duration of diabetes (years)

  1-2                            (0.438-1.506)    0.509
  >2-5                           (0.931-3.431)    0.081
  >5-9                           (0.571- 2.125)   0.773
  >9                                   -

Family history of diabetes

  Positive                       (0.901-2.411)    0.123
  Negative                             -

Consuming low fat/skimmed

  Yes                            (1.385-4.760)    0.003
  No                                   -

Glycaemic status (%)

  <7                                   -
  [greater than or equal to]7    (0.736-1.838)    0.517

OR=Odds ratio; CI=Confidence interval

Table 5. Multivariate logistic regression analysis
of factors of consuming diabetic diet among
hospital-based T2DM subjects from Ahmedabad, Western
India (n=399)

Variable                           AOR      95% CI      p value

Visit to dieticians

  Yes                             10.6   5.124-21.816   <0.001
  No                                1         -

Level of education

  No education                     0.7   0.215-2.453     0.606
  Up to secondary                  3.5   2.020-5.948    <0.001
  Above secondary                   1         -

Family history of diabetes

  Positive                         1.8   0.996-3.094     0.051
  Negative                          1         -

Consuming low fat/skimmed milk

  Yes                              2.2   1.078-4.291     0.030
  No                                1         -

AOR=Adjusted odds ratio; CI=Confidence interval
Gale Copyright: Copyright 2012 Gale, Cengage Learning. All rights reserved.